
Extracted from:

Small, Sharp Software Tools
Harness the Combinatoric Power of
Command-Line Tools and Utilities

This PDF file contains pages extracted from Small, Sharp Software Tools, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com




Small, Sharp Software Tools
Harness the Combinatoric Power of
Command-Line Tools and Utilities

Brian P. Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-296-1
Book version: P1.0—May 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com


When you hear about the command-line interface, or CLI, from other devel-
opers, you often hear about how much faster it is than a graphical environ-
ment. But if you’re like most developers, you’re probably pretty good with
your computer. You know some keyboard shortcuts that help you move even
faster. The best way to see the real value of the CLI is to just dive right in to
some hands-on activities, while learning a few time-saving techniques along
the way. In this chapter, you’ll use the command line to do some things you
probably know how to do already through the graphical interface. You’ll work
with files and directories, navigate around a bit, install some software, and
get more information about the commands you’re typing. We’re just going to
scratch the surface in this first chapter; we’ll go into more detail on many of
the topics in the rest of the book, and we’ll even review these topics again to
help them stick. This chapter is designed to give you a taste of working with
the command-line interface.

But first, you have to find the command-line interface.

Accessing the Command-Line Interface
Getting access to the command-line interface, often called the shell, varies
based on your operating system. Usually, you’ll access it through a program
called a terminal, short for terminal emulator.

If you’re on a Linux machine with a GUI, you can usually launch its terminal
app with Control+Alt+ t , or by searching for a Terminal program in your list of
programs. When the terminal opens, you’ll see something like this:

brian@puzzles:~$

This is the prompt, and it’s where you’ll enter commands. We’ll explore its
meaning shortly.

To access the command-line interface on a Mac, hold down the Command  key
on your keyboard and press Space . This brings up the Spotlight window. Type
terminal into the box and press Enter . This launches the Terminal program. The
prompt you’ll see looks like this:

puzzles:~ brian$

Windows 10 has a few command-line interfaces. The classic Command Prompt
and the PowerShell interfaces aren’t compatible with the command-line interface
on Linux, BSD, or macOS systems. They have their own commands and
approaches to solving problems. So you won’t be using those interfaces in this
book. Instead, you’ll use the Bash on Windows feature for Windows 10.

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


To do this, you’ll enable the Windows Subsystem for Linux1 and then download
Ubuntu from the Windows Store. It’s a free download that installs a version
of Ubuntu on top of your Windows operating system, and it’s fully supported
by Microsoft. There are other flavors of Linux available, but you’ll use Ubuntu
in this book.

First, open the Control Panel and select Programs. Then, click Turn Windows
Features On Or Off. Locate and enable the option for “Windows Subsystem
for Linux.” Then reboot your computer.

When the computer reboots, open the Windows Store and search for Ubuntu.
Install it and launch it once it installs.

You’ll see a console window open and Ubuntu will install some additional
components and configure itself:

Installing, this may take a few minutes...
Installation successful!

Once it finishes extracting, you’ll get prompted to create a new user account
and password. This new account isn’t connected to your Windows account
in any way. To keep things easy to remember, use the same username as
your Windows user. For the password, choose anything you like. You won’t
see your password as you type it, as it’s hidden for security purposes.

Please create a default UNIX user account. The username does not need to match
your Windows username.
For more information visit: https://aka.ms/wslusers
Enter new UNIX username: brian
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Default UNIX user set to: brian
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

You’ll then be placed at a Bash prompt. Type exit to close the window.

To open Bash on Windows in the future, open a new Command Prompt or
PowerShell window and type bash again. Alternatively, choose Ubuntu from
the Start menu.

Now that you have the CLI open, you can start exploring.

1. https://docs.microsoft.com/en-us/windows/wsl/install-win10

• 2

• Click  HERE  to purchase this book now.  discuss

https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


Getting Your Bearings
When you first open the CLI, you’ll be presented with something that looks
like this:

brian@puzzles:~$

This is the prompt, and it’s the CLI’s way of telling you it’s ready for you to
type a command. This prompt is from the Ubuntu operating system. If you’re
on a Mac, your prompt might look like this:

puzzles:~ brian$

These prompts may look cryptic at first, but there’s valuable information here.
The prompts in these examples show the username (brian), the computer’s
hostname (puzzles), and the current working directory, or your current location
on the computer’s filesystem.

In this case, the current working directory is represented by a tilde (~ ), which
means your home directory. Your home directory is where you’ll find docu-
ments, music, and settings for your programs. You have total control over
your home directory. You can create and delete files and directories, move
things around, and even install whole programs without administrative priv-
ileges. When you launch the CLI, it’ll open the session in your home directory.

Why the Tilde Is Used to Represent the Home Directory

In the 1970s, the Lear-Siegler ADM-3A terminal was in widespread
use. On the ADM-3A keyboard, the tilde shared the same key as
the Home  key.

The computer’s disk stores files in a hierarchy of folders, or directories, which
are called the filesystem. You’ll explore this in detail in Chapter 3, Navigating
the Filesystem, on page ?. When you use the GUI, you click a folder to open
it and see its contents, and an indicator at the top of the GUI window tells
you where you are on the filesystem.

Your prompt may tell you what directory you’re currently viewing. But a clearer
way to tell is with the pwd command, which stands for "print working directory."

At the prompt, type:

$ pwd
/home/brian

The command prints the full path, or location on the filesystem, to the current
working directory. In this case, the current working directory is your home

• Click  HERE  to purchase this book now.  discuss

Getting Your Bearings • 3

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


directory, and the path you see depends on which operating system you’re
using. For example, on macOS, you’ll see /Users instead of /home.

In a GUI, you’d look at the folder name in the top of the file window to see
where you are. On the CLI, you use pwd to get that information.

Now that you know where you are, look at the contents of your home directory
by using the ls command. This command lists the contents of the directory.

$ ls
Desktop Documents Downloads Music Pictures Public Templates Videos

You might see different files and directories in your home directory, as each
operating system sets things up a little differently.

If your system has a GUI, you’ll see a directory named Desktop, and anything
you place in that directory will show up on your computer’s graphical desktop.
After all, any shortcuts, directories, or files on your Desktop have to be stored
somewhere on your computer, right?

Using the CLI, navigate to your Desktop directory using the cd command. The
cd command is short for “change directory.” It’s somewhat like clicking a
folder to open it up in the GUI environment, except it’s a little more powerful
because you can use it to jump to any directory on your filesystem immedi-
ately, without going through any intermediate directory. You’ll look at that
in Chapter 3, Navigating the Filesystem, on page ?.

Type this command to navigate to the Desktop directory if you’re using a Mac
or running a Linux distribution with a GUI:

$ cd Desktop

If you’re using Bash on Windows, the Desktop directory isn’t located in the
same place. The Windows Subsystem for Linux uses its own filesystem that’s
separate from the one that Windows uses, with its own home directory.
However, you can still follow along, as the Windows Subsystem for Linux
makes your Windows desktop available. Execute the following command,
substituting your_username for your Windows username.

$ cd "/mnt/c/Users/your_username/Desktop"

You’re now in the Desktop directory, which you can verify with the pwd command
just to make sure.

Now, let’s create a file on your desktop that contains some text.

• 4

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


Creating and Reading Files
The echo command takes text and prints it back to the screen. At the prompt,
type the following command:

$ echo Hello there

You’ll see the text you entered printed back to you. You’ll use echo in scripts
you write to display instructions or output to users. But you can also use it
to insert text into files if you combine it with a feature called redirection.

Let’s create a text file in your Desktop directory that contains the text “Hello”.
You’ll call this file greetings.txt. At the prompt, type:

$ echo Hello > greetings.txt

When you press the Enter  key you won’t see any visual feedback because the
output of the echo command was redirected to the file you specified. If you
look at your computer’s graphical desktop, you should see a new icon that
wasn’t there before for greetings.txt. You just used the command-line interface
to create a file that contains some text. Right now it’s a cool parlor trick, but
the implications are important; this is one way you can programmatically
create files on the filesystem.

You can do so much more with redirection, but let’s move on and continue
your introductory tour. You’ll work with echo a lot more soon enough.

But first, make sure that this text file does indeed contain the text you placed
inside. You could open this file with a graphical text editor, but you can display
the contents of any file from the command line quickly with the cat command:

$ cat greetings.txt

This command reads the contents of a given file and displays them on the screen.

Since the file was small, it all fit on one screen. But try reading the contents
of a much larger file and see what happens. On macOS and Ubuntu, there’s
a dictionary of words located at /usr/share/dict/words. Use the cat command to
display its contents:

$ cat /usr/share/dict/words

If you’re using Ubuntu on Windows 10, you might not have this file, but you
can try using a different file for this exercise instead.

You’ll see the contents of the file scroll by until it reaches the end. You’ll
encounter this a lot when working on the command line. You might have the

• Click  HERE  to purchase this book now.  discuss

Creating and Reading Files • 5

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


source code to a program you’re working on, a document you’re editing, or a
log file you’re using to diagnose an issue.

You can use the more and less commands to read longer files one page at a
time. Use the less command to read the contents of that huge dictionary file:

$ less /usr/share/dict/words

You’ll see the first page of the file on the screen. Use the Enter  key to display
the next line, the Spacebar  to jump to the next page, and the q  key to exit and
return to your prompt.

Since you’re using less, you can use the arrow keys to move forward and
backward through the file. On most systems, the less and more commands run
the same program. The more command is a legacy program with limited fea-
tures, but it’s still quite popular in documentation and on some minimalist
operating systems due to its smaller size.

Now, let’s look at redirecting program output to files and other programs,
something you’ll find yourself doing quite often.

Redirecting Streams of Text
When you used the echo command to create a file, you took the output of one
command and directed it somewhere else. Let’s look at this in more detail.

Execute this command to view all of the running processes on your computer:

$ ps -ef

The ps command shows you the processes running on your computer, and
the -ef options show you the processes for every user in all sessions. Once
again, the output of the command streams by.

This problem can be solved in a couple of ways. The first approach would be
to capture the output to a file by using the > operator, just like you did to
create a text file with echo:

$ ps -ef > processes.txt

You could then open that file in your favorite text editor and read its contents,
or you could use less to view it one page at a time.

But a better way involves less steps. You can redirect the output of the ps
command to the less command by using the pipe (|) character. Give it a try:

$ ps -ef | less

Now you can read the output more easily.

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


Clearing and Resetting Your Terminal

After typing several commands, your terminal might become a little harder to read.
Type the clear command to clear the contents of the screen. Everything in the terminal
will be wiped away and your prompt will start at the top of the screen just as if you’d
opened a new terminal.

In some cases, you may need to do more than just clear your screen. Your terminal
might begin behaving strangely after you’ve run some programs—for example, if you
accidentally used the cat command to read an executable file. Instead of closing the
terminal and starting a new one, try the reset command, which resets your terminal
session and usually fixes the problem. The reset command works in conjunction with
your Terminal program, so its actual behavior depends on how your Terminal program
is configured.

As you work on the command line, you’ll find yourself taking the output of
one program and sending it off to another program, which will then output
something new. Sometimes you might use three or four programs together
to achieve a result. Imagine the data that flows as a stream of text that can
be processed by programs. Each program that processes the text does one
thing. You’ll learn more detail about this concept later in the book. For now,
turn your attention back to files and directories.

Creating Directories
Directories help you organize your files and projects. The mkdir command lets
you create a directory. Let’s use it to create a directory called website on the
Desktop. At the prompt, assuming you’re still in your Desktop directory, type:

$ mkdir website

If your computer’s graphical desktop is visible, you’ll see the directory appear.
Otherwise, use the ls command to view it:

$ ls

Once you’ve created the directory, you can use the cd command to navigate
into that directory:

$ cd website

You can then create new directories inside of this directory for images, style
sheets, and scripts. You’ll explore more efficient ways to create complex
directory structures for projects later. For now, take a look at how you can
get back to your home directory.

• Click  HERE  to purchase this book now.  discuss

Creating Directories • 7

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


Going Home
No matter where you are, you can execute a single command that will take
you back to your home directory. As you recall, the tilde (~ ) always refers to
your home directory.

So if you type

$ cd ~

you’ll return to your home directory regardless of where you are on the
filesystem.

You can save a couple of keystrokes, because entering cd followed by Enter
will do the same thing. Try it out:

$ cd

Either of these methods will always take you back to your home directory,
no matter where you are on the filesystem.

Using Autocompletion
If you need to reference a filename or directory in a command, you can type
part of the name, followed by the Tab  key, and the CLI will attempt to auto-
complete the word for you. Try this out. Switch to the Documents directory in
your home directory like this:

$ cd ~/Doc<Tab>

As soon as you press Tab , the word Documents will expand. This technique
serves two purposes. First, it saves you from typing the whole name, which
means you’ll make less typos. But second, the CLI only completes filenames
and directory names it can find. If it can’t complete it, there’s a good chance
it doesn’t have enough information, or the file doesn’t actually exist. Try this
out. Navigate to your home directory:

$ cd

Then type:

$ cd D<Tab>

You won’t see anything. This is because Bash doesn’t have enough information
to do the completion, because you probably have a Documents directory as well
as a Downloads directory.

But if you press Tab  again, you’ll see a list of possible options:

• 8

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


Desktop/ Documents/ Downloads/

Type a few more characters and press Tab  to let it autocomplete the rest of
the directory name.

Now, try autocompleting var from your Home directory:

$ cd va<Tab>

This time, pressing Tab  doesn’t do anything. And pressing it a second time
doesn’t either, since there’s no var directory within the current directory. You
can use this as a good test while you’re learning how to navigate around; if
you can’t autocomplete the filename or directory, you might not be looking
in the right spot.

Some tasks, like creating files outside of your home directory, or installing
programs system-wide, require that you run commands with additional
privileges.

Elevating Privileges
You have complete and total control over all of the files in your home directory.
But you don’t have free reign over directories and files across the whole disk.
You can only do certain things with superuser privileges. On Linux, Unix,
BSD, and macOS systems, this is called the root user. To keep things more
secure and to prevent accidents, regular user accounts are restricted from
modifying things outside of their home directories.

Try to create a new directory called /var/website:

$ mkdir /var/website

This command will fail with the following error:

mkdir: /var/website: Permission denied

You’re not allowed to create files in the /var directory; only certain users can
do that. But thanks to the sudo command, you can execute a single command
as the root user, without logging in as that user. To use it, prefix the previous
command with sudo, like this:

$ sudo mkdir /var/website

Think of this sudo command as “superuser do mkdir /var/website.” The command
will complete successfully, and you can verify that it exists by using the ls
command to view the contents of the /var directory:

$ ls /var/
backups cache crash lib local lock log mail metrics opt run snap

• Click  HERE  to purchase this book now.  discuss

Elevating Privileges • 9

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev


spool tmp website

The website directory is now listed in the output.

The sudo command is powerful but dangerous. You’re running the command
as a privileged user, so if the command does something sinister, you could
be in a lot of trouble. It also bypasses any file permission restrictions, meaning
you could accidentally alter or delete files owned by anyone if you accidentally
ran the wrong command. Use this with care!

One place you’re likely to use sudo is when modifying system-wide configuration
files, or, as you’ll try next, installing additional programs or tools on your
operating system.

• 10

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev



