
Extracted from:

SQL Antipatterns, Volume 1
Avoiding the Pitfalls of Database Programming

This PDF file contains pages extracted from SQL Antipatterns, Volume 1, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

SQL Antipatterns, Volume 1
Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-898-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my wife Jan, my best supporter.

CHAPTER 2

A Netscape engineer who shan’t be named once passed a pointer to
JavaScript, stored it as a string, and later passed it back to C, killing 30.

 ➤ Blake Ross

Jaywalking
You’re developing a feature in the bug-tracking application to designate a
user as the primary contact for a product. Your original design allowed only
one user to be the contact for each product. However, it was no surprise when
you were requested to support assigning multiple users as contacts for a
given product.

At the time, it seemed simple to change the database to store a list of user
account identifiers separated by commas, instead of the single identifier it
used before.

Soon your boss approaches you with a problem. “The engineering department
has been adding associate staff to their projects. They tell me they can add
five people only. If they try to add more, they get an error. What’s going on?”

You nod, “Yeah, you can only list so many people on a project,” as though
this is completely ordinary.

Sensing that your boss needs a more precise explanation, “Well, five to ten—
maybe a few more. It depends on how old each person’s account is.” Now
your boss raises his eyebrows. You continue, “I store the account IDs for a
project in a comma-separated list. The list of IDs has to fit in a string with a
maximum length. If the account IDs are short, I can fit more in the list. So,
people who created the earlier accounts have an ID of 99 or less, and those
are shorter.”

Your boss frowns. You have a feeling you’re going to be staying late.

Programmers commonly use comma-separated lists to avoid creating an
intersection table for a many-to-many relationship. This antipattern is called
Jaywalking, because jaywalking is also an act of avoiding an intersection.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Objective: Store Multivalue Attributes
When a column in a table has a single value, the design is straightforward:
you can choose an SQL data type to represent a single instance of that value,
for example an integer, date, or string. It’s not clear how you store a collection
of related values in a column.

In the example bug-tracking database, you might associate a product with a
contact using an integer column in the Products table. Each account may have
many products, and each product references one contact, so there’s a many-
to-one relationship between products and accounts.

Jaywalking/obj/create.sql
CREATE TABLE Products (

product_id SERIAL PRIMARY KEY,
product_name VARCHAR(1000),
account_id BIGINT UNSIGNED,
-- . . .
FOREIGN KEY (account_id) REFERENCES Accounts(account_id)

);

INSERT INTO Products (product_id, product_name, account_id)
VALUES (DEFAULT, 'Visual TurboBuilder', 12);

As your project matures, you realize that a product might have multiple
contacts. In addition to the many-to-one relationship, you also need to support
a one-to-many relationship from products to accounts. One row in the Products
table must be able to have more than one contact.

Antipattern: Format Comma-Separated Lists
To minimize changes to the database structure, you decide to redefine the
account_id column as a VARCHAR so you can list multiple account IDs in that
column, separated by commas.

Jaywalking/anti/create.sql
CREATE TABLE Products (

product_id SERIAL PRIMARY KEY,
product_name VARCHAR(1000),
account_id VARCHAR(100), -- comma-separated list
-- . . .

);

INSERT INTO Products (product_id, product_name, account_id)
VALUES (DEFAULT, 'Visual TurboBuilder', '12,34');

This seems like a win, because you’ve created no additional tables or columns;
you’ve changed the data type of only one column. However, let’s look at the
performance and data integrity problems this table design suffers from.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/Jaywalking/obj/create.sql
http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/create.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Querying Products for a Specific Account
Queries are difficult if all the foreign keys are combined into a single field.
You can no longer use equality; instead, you have to use a test against some
kind of pattern. For example, MySQL lets you write something like the follow-
ing to find all the products for account 12:

Jaywalking/anti/regexp.sql
SELECT * FROM Products WHERE account_id REGEXP '\\b12\\b';

Pattern-matching expressions may return false matches. Performance is poor
because the matching can’t benefit from indexes. Since pattern-matching
syntax is different in each database brand, your SQL code isn’t vendor neutral.

Querying Accounts for a Given Product
Likewise, it’s awkward and slow to join a comma-separated list to matching
rows in the referenced table.

Jaywalking/anti/regexp.sql
SELECT * FROM Products AS p JOIN Accounts AS a

ON p.account_id REGEXP '\\b' || a.account_id || '\\b'
WHERE p.product_id = 123;

Joining two tables using an expression like this one spoils any chance of
using indexes, so again the performance will suffer. The query must scan
through both tables, generate a cross product, and evaluate the regular
expression for every combination of rows.

Making Aggregate Queries
Aggregate queries use functions like COUNT(), SUM(), and AVG(). However, these
functions are designed to be used over groups of rows, not comma-separated
lists. You have to resort to tricks, like calculating the length of the string of
comma-separated values minus the length of that string with the commas
removed. This can be used to count the elements in the list.

Jaywalking/anti/count.sql
SELECT product_id,

LENGTH(account_id) - LENGTH(REPLACE(account_id, ',', '')) + 1
AS contacts_per_product

FROM Products;

Tricks like this can be clever but never clear. These kinds of solutions are
time consuming to develop and hard to debug. Some aggregate queries can’t
be accomplished with tricks at all.

• Click HERE to purchase this book now. discuss

Antipattern: Format Comma-Separated Lists • 9

http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/regexp.sql
http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/regexp.sql
http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/count.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Updating Accounts for a Specific Product
You can add a new ID to the end of the list with string concatenation, but
this might not leave the list in sorted order.

Jaywalking/anti/update.sql
UPDATE Products
SET account_id = account_id || ',' || 56
WHERE product_id = 123;

To remove an item from the list, you have to run two SQL queries: one to
fetch the old list and a second to save the updated list.

Jaywalking/anti/remove.py
import mysql.connector

cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()

product_id_to_search = 2
value_to_remove = '34'

query = "SELECT product_id, account_id FROM Products WHERE product_id = %s"
cursor.execute(query, (product_id_to_search,))
for (row) in cursor:

(product_id, account_ids) = row
account_id_list = account_ids.split(",")
account_id_list.remove(value_to_remove)
account_ids = ",".join(account_id_list)
query = "UPDATE Products SET account_id = %s WHERE product_id = %s"
cursor.execute(query, (account_ids, product_id,))

cnx.commit()

That’s quite a lot of code just to remove an entry from a list.

Validating Product IDs
What prevents a user from entering invalid entries like banana?

Jaywalking/anti/banana.sql
INSERT INTO Products (product_id, product_name, account_id)
VALUES (DEFAULT, 'Visual TurboBuilder', '12,34,banana');

Users will find a way to enter any and all variations, and your database
will turn to mush. There won’t necessarily be database errors, but the data
will be nonsense.

Even if the values are at least integers, you can’t be sure they are integers
that occur in the Accounts table. The standard way to ensure this is to use a
foreign key constraint, but foreign keys can only validate the whole column,
not individual elements in a list.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/update.sql
http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/remove.py
http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/banana.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Choosing a Separator Character
If you store a list of string values instead of integers, some list entries may
contain your separator character. Using a comma as the separator between
entries may become ambiguous. You can choose a different character as the
separator, but you can’t guarantee that this new separator will never appear
in an entry.

List Length Limitations
How many list entries can you store in a VARCHAR(30) column? It depends on
the length of each entry. If each entry is two characters long, then you can
store ten (including the commas). If each entry is six characters, then you
can store only four entries:

Jaywalking/anti/length.sql
UPDATE Products SET account_id = '10,14,18,22,26,30,34,38,42,46'
WHERE product_id = 123;

UPDATE Products SET account_id = '101418,222630,343842,467790'
WHERE product_id = 123;

How can you know that VARCHAR(30) supports the longest list you will need in
the future? How long is long enough? Try explaining the reason for this length
limit to your boss or to your customers.

How to Recognize the Antipattern
If you hear phrases like the following spoken by your project team, treat it as
a clue that the Jaywalking antipattern is being employed:

• “What is the greatest number of entries this list must support?”

This question comes up when you’re trying to choose the maximum length
of the VARCHAR column.

• “Do you know how to match a word boundary in SQL?”

If you use regular expressions to pick out parts of a string, this could be
a clue that you should store those parts separately.

• “What character will never appear in any list entry?”

You want to use an unambiguous separator character, but you should
expect that any character might someday appear in a value in the list.

• Click HERE to purchase this book now. discuss

How to Recognize the Antipattern • 11

http://media.pragprog.com/titles/bksap1/code/Jaywalking/anti/length.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

