Extracted from:

SQL Antipatterns, Volume 1

Avoiding the Pitfalls of Database Programming

This PDF file contains pages extracted from SQL Antipatterns, Volume 1, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pr. ematic
OgraImmers

SQL Antipatterns,

Volume 1

Avoiding the Pitfalls of Database
Programming

Bill Karwin
edited by Jacquelyn Carter

SQL Antipatterns, Volume 1

Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Karen Galle

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-898-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my wife Jan, my best supporter.

Solution: Use Null as a Unique Value

Most problems with null values are based on a common misunderstanding
of the behavior of SQL’s three-valued logic. For programmers accustomed to
the conventional true/false logic implemented in most other languages, this
can be a challenge. You can handle null values in SQL queries with a little
study of how they work.

Null in Scalar Expressions

Suppose Stan is thirty years old, while Oliver’s age is unknown. If you ask
whether Stan is older than Oliver, the only possible answer is “I don’t know.”
If you ask whether Stan is the same age as Oliver, the answer is also “I don’t
know.” If you ask what is the sum of Stan’s age and Oliver’s age, the answer
is the same.

Charlie’s age is also unknown. If you ask whether Oliver’s age is equal to
Charlie’s age, the answer is still “I don’t know.” This shows why the result of
a comparison like NULL = NULL is also null.

The following table describes some cases where programmers expect one
result but get something different.

Expression Expected Actual Because

NULL=10 TRUE NULL Null is not zero.

NULL = 12345 FALSE NULL Unknown if the unspecified value is
equal to a given value.

NULL <> 12345 TRUE NULL Also unknown if it’s unequal.

NULL + 12345 12345 NULL Null is not zero.

NULL || 'string' 'string' NULL Null is not an empty string.

NULL = NULL TRUE NULL Unknown if one unspecified value is the
same as another.

NULL <> NULL FALSE NULL Also unknown if they’re different.

Of course, these examples apply not only when using the NULL keyword but
also to any column or expression whose value is null.

Null in Boolean Expressions

Null is neither true nor false. A null value certainly isn’t true, but it isn’t the
same as false. If it were, then applying NOT to a null value would result in
true. However, that’s not the way it works; NOT (NULL) results in another null.
This confuses some people who try to use boolean expressions with null.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

*8

The following table shows some some additional cases where programmers
expect one result but get something different.

Expression Expected Actual Because

NULL AND TRUE ~ FALSE NULL Null is not false.

NULL AND FALSE FALSE FALSE Any truth value AND FALSE is false.
NULL OR FALSE ~ FALSE NULL Null is not false.

NULL OR TRUE TRUE TRUE Any truth value OR TRUE is true.
NOT (NULL) TRUE NULL Null is not false.

Consider the following case, where a nullable column may behave in a more intuitive
way by serendipity.

SELECT * FROM Bugs WHERE assigned to <> 'NULL';

Here the nullable column assigned_to is compared to the string value 'NULL' (notice the
quotes), instead of the actual NULL keyword.

Where assigned_to is null, comparing it to the string 'NULL' is not true. The row is
excluded from the query result, which is the programmer’s intent.

The other case is that the column is an integer compared to the string 'NULL'. The
integer value of a string like 'NULL' is zero in most brands of database. The integer
value of assigned_to is almost certainly greater than zero. It’s unequal to the string, so
the row is included in the query result.

Thus, by making another common mistake, that of putting quotes around the NULL
keyword, some programmers may unwittingly get the result they wanted. Unfortu-
nately, this coincidence doesn’t hold in other searches, such as WHERE assigned_to = 'NULL'.

Searching for Null

Since neither equality nor inequality return true when comparing one value
to a null value, you need some other operation if you are searching for a null.
Older SQL standards define the IS NULL predicate, which returns true if its
single operand is null. The opposite, ISNOTNULL, returns false if its operand
is null.

Fear-Unknown/soln/search.sql
SELECT * FROM Bugs WHERE assigned to IS NULL;

SELECT * FROM Bugs WHERE assigned to IS NOT NULL;

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/soln/search.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Solution: Use Null as a Unique Value ® 9

In addition, the SQL-99 standard defines another comparison predicate,
IS DISTINCT FROM. This works like an ordinary inequality operator <>, except
that it always returns true or false, even when its operands are null. This
relieves you from writing tedious expressions that must test IS NULL before
comparing to a value. The following two queries are equivalent:

Fear-Unknown/soln/is-distinct-from.sql
SELECT * FROM Bugs WHERE assigned to IS NULL OR assigned to <> 1;

SELECT * FROM Bugs WHERE assigned_to IS DISTINCT FROM 1;

You can use this predicate with query parameters to which you want to send
either a literal value or NULL:

Fear-Unknown/soln/is-distinct-from-parameter.sql
SELECT * FROM Bugs WHERE assigned to IS DISTINCT FROM ?;

Support for IS DISTINCT FROM is inconsistent among database brands. PostgreSQL,
IBM DB2, and Firebird do support it, whereas Oracle and Microsoft SQL
Server don’t support it yet. MySQL offers a proprietary operator <=> that
works like IS NOT DISTINCT FROM.

Declare Columns NOT NULL

It's recommended to declare a NOT NULL constraint on a column for which a
null would break a policy in your application or otherwise be nonsensical.
It's better to allow the database to enforce constraints uniformly rather than
rely on application code.

For example, it's reasonable that any entry in the Bugs table should have a
non-null value for the date reported, reported by, and status columns. Likewise,
rows in child tables like Comments must include a non-null bug_id, referencing
an existing bug. You should declare these columns with the NOT NULL option.

Some people recommend that you define a DEFAULT for every column, so that
if you omit the column in an INSERT statement, the column gets some value
instead of null. That’s good advice for some columns but not for other columns.
For example, Bugs.reported_by should not be null. It should be the account id
of the user who reported it, but it’s not possible to declare this as a default.
It’s valid and common for a column to need a NOT NULL constraint yet have no
logical default value.

Dynamic Defaults

In some query results, you may need to force a column or expression to be
non-null for the sake of simplifying the query logic, but you don’t want that
value to be stored in the table. You need a way to set a non-null value to be

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/soln/is-distinct-from.sql
http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/soln/is-distinct-from-parameter.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

°10

used if a given expression would return a null result. For this you should use
the COALESCE() function. This function accepts a variable number of arguments
and returns its first non-null argument.

In the story about concatenating users’ names in the opening of this chapter,
you could use COALESCE() to make an expression that uses a single space in
place of the middle initial, so a null-valued middle initial doesn’t make the
whole expression become null.

Fear-Unknown/soln/coalesce.sql

SELECT first name || COALESCE(' ' || middle initial || ' ', ' ') || last_name
AS full name

FROM Accounts;

COALESCE() is a standard SQL function. Some database brands support a sim-
ilar function by another name, such as NVL() or ISNULL().

Use null to signify a missing value for any data type.

o 7

Mini-Antipattern: NOT IN (NULL)

If the logic of null isn’t confusing enough, there are edge cases where it's even
harder to avoid getting lost in the boolean rules.

You may have mastered the logic enough to understand that the following
two queries are equivalent:

Fear-Unknown/mini/in-null.sql
SELECT * FROM Bugs WHERE status IN (NULL, 'NEW');

SELECT * FROM Bugs WHERE status = NULL OR status = 'NEW';
You know that comparing a value equals null is unknown, and that’s not

true, so the first term of that comparison will never be satisfied. That’s okay,
because the query still matches rows with “NEW”.

This gets really interesting when the search is negated.

Fear-Unknown/mini/not-in-null.sql
SELECT * FROM Bugs WHERE status NOT IN (NULL, 'NEW');

You might think this simply matches the complement of the set of rows
matched by the previous query. That is, all rows except those with status
“NEW”. In fact, none of the rows match. Why?

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/soln/coalesce.sql
http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/mini/in-null.sql
http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/mini/not-in-null.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Mini-Antipattern: NOT IN (NULL) ¢ 11

The query with the NOT IN predicate can be rewritten as either of the following:

Fear-Unknown/mini/not-in-null.sql
SELECT * FROM Bugs WHERE NOT (status = NULL OR status = 'NEW');

SELECT * FROM Bugs WHERE NOT (status = NULL) AND NOT (status = 'NEW');

The first rewrite looks familiar, as an IN predicate is equivalent to equality
comparisons to each respective value, as terms of OR operations. Then the
negation NOT is applied to the expression. You know by now that comparing
a column equal to null is unknown, and the negation of unknown is still
unknown.

The second rewrite is an application of DeMorgan’s law, a boolean algebra
transformation. The negation of an expression negates each term in the
expression, as it converts OR to AND or vice versa.

Now you should see that NOT (status = NULL) will still be unknown, and using
AND to combine that with the other term makes the whole expression unknown
for any row evaluated. So, the SQL query always fails to match any rows,
regardless of any value in the status column.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/Fear-Unknown/mini/not-in-null.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

