
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Your manager Paul sends you a request. “We need a report of traffic on the
site. Please display the total comments by month, in columns. And make it
data-driven, so the report automatically includes future months as they get
traffic.”

You know how to write a query that gives subtotals using COUNT() and GROUP
BY, but that outputs in rows, not columns. How can you turn that result on
its side, output in columns, like a spreadsheet? And how can you meet your
boss’s requirement that the report expands to handle future months?

Objective: Turning the Table
It’s a natural request to display the results of a query in a tabular format,
using as many columns as needed to make it easy to read. Effective presen-
tation is important.

SQL query results are like the result of a function; they are raw data, which
isn’t necessarily the most readable format. But you still have to present the
data in the format your boss requested. They want a column for each month,
and they want the report to include new columns for future months:

2025-022025-012024-12…2022-032022-022022-01

12345678110413578675309606084220483271234576

This type of query is called a pivot table query or a crosstab query.

Antipattern: Using a Single Query
To produce the report format your boss requested, the temptation is to
develop a single query that populates “dynamic” columns (that is, additional
columns are appended to the result as the query discovers new data). This
is where you get stuck searching for a solution. Nothing you try as a single
query works.

Wildcard in the Select-List
You know that you can use the wildcard * in an SQL select-list to populate a
variable number of columns. This may sound like it’s on the right track, but
it doesn’t work to add columns for each distinct value examined. The wildcard
is only a shorthand for a fixed set of columns, corresponding to the columns
in tables referenced in the FROM clause.

You might try to use GROUP BY, thinking that it would produce a value for each
year and month. But GROUP BY doesn’t do what you want.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

Pivot/anti/group-by.sql
SELECT *
FROM comment
GROUP BY TO_CHAR(created_at, 'YYYY-MM');

SELECT comment_id, comment_text, in_reply_to, user_id, created_at
FROM comment
GROUP BY TO_CHAR(created_at, 'YYYY-MM');

In fact, both forms of this query result in an error:

ERROR: column "comment.comment_id" must appear in the GROUP BY clause
or be used in an aggregate function
LINE 1: SELECT comment_id, comment_text, in_reply_to, user_id, creat...

^

A query with GROUP BY would produce an additional row for each distinct value
resulting from the grouping expression, not an additional column. Besides
that, the values in the rest of the columns becomes ambiguous, and that’s
the reason for the error. See the chapter “Ambiguous Groups” in SQL
Antipatterns Volume 1 [Kar22] for more explanation.

Correlated Subqueries In The Select-List
You can use subqueries in a select-list, such that each sub-query has a
monthly subtotal. This produces the result you want, if you specify a column
for each range of dates. This means you need to know the dates present in
the table before you write the query. There’s no way to make it expand the
list of these expressions automatically as time goes on and traffic occurs in
additional months. You’ll have to change the query to add a new column every
time the next month of traffic is added to the table.

Pivot/anti/subquery.sql
SELECT

(SELECT COUNT(*) FROM comment
WHERE created_at BETWEEN '2022-01-01' AND '2022-02-01') AS "2022-01",

(SELECT COUNT(*) FROM comment
WHERE created_at BETWEEN '2022-02-01' AND '2022-03-01') AS "2022-02",

(SELECT COUNT(*) FROM comment
WHERE created_at BETWEEN '2022-03-01' AND '2022-04-01') AS "2022-03",

-- ...
(SELECT COUNT(*) FROM comment
WHERE created_at BETWEEN '2024-12-01' AND '2025-01-01') AS "2024-12",

(SELECT COUNT(*) FROM comment
WHERE created_at BETWEEN '2025-01-01' AND '2025-02-01') AS "2025-01",

(SELECT COUNT(*) FROM comment
WHERE created_at BETWEEN '2025-02-01' AND '2025-03-01') AS "2025-02";

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap2/code/Pivot%2Fanti%2Fgroup-by.sql
http://media.pragprog.com/titles/bksap2/code/Pivot%2Fanti%2Fsubquery.sql
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

Correlated subqueries in the select-list have a high cost with respect to per-
formance, because most SQL implementations repeat the execution for each
subquery.

Conditional Aggregation
Instead of using subqueries, you can use an aggregation function like COUNT(),
applied to a subset of rows. This is called conditional aggregation. Functions
like COUNT() ignore rows where the expression inside the function is NULL. If
you use an expression as an argument to COUNT() that evaluates to a non-NULL
value on certain rows, and NULL otherwise, then it counts the subset of rows
where the expression is non-NULL.

Pivot/anti/conditional-agg.sql
SELECT

COUNT(CASE WHEN created_at BETWEEN '2022-01-01' AND '2022-02-01'
THEN 1 ELSE NULL END) AS "2022-01",

COUNT(CASE WHEN created_at BETWEEN '2022-02-01' AND '2022-03-01'
THEN 1 ELSE NULL END) AS "2022-02",

COUNT(CASE WHEN created_at BETWEEN '2022-03-01' AND '2022-04-01'
THEN 1 ELSE NULL END) AS "2022-03",

-- ...
COUNT(CASE WHEN created_at BETWEEN '2024-12-01' AND '2025-01-01'

THEN 1 ELSE NULL END) AS "2024-12",
COUNT(CASE WHEN created_at BETWEEN '2025-01-01' AND '2025-02-01'

THEN 1 ELSE NULL END) AS "2025-01",
COUNT(CASE WHEN created_at BETWEEN '2025-02-01' AND '2025-03-01'

THEN 1 ELSE NULL END) AS "2025-02"
FROM comment;

This also requires you to spell out each column explicitly. There’s no syntax
to make the select-list populate more columns than those you specify.

If you are using PostgreSQL or SQLite, the FILTER clause (introduced in
SQL:2003) assist conditional aggregation. This does the same thing as the
previous example, but you may find it makes the code more clear.

Pivot/anti/filter.sql
SELECT

COUNT(*) FILTER (WHERE created_at
BETWEEN '2022-01-01' AND '2022-02-01') AS "2022-01",

COUNT(*) FILTER (WHERE created_at
BETWEEN '2022-02-01' AND '2022-03-01') AS "2022-02",

COUNT(*) FILTER (WHERE created_at
BETWEEN '2022-03-01' AND '2022-04-01') AS "2022-03",

-- ...
COUNT(*) FILTER (WHERE created_at

BETWEEN '2024-12-01' AND '2025-01-01') AS "2024-12",
COUNT(*) FILTER (WHERE created_at

• Click HERE to purchase this book now. discuss

Antipattern: Using a Single Query • 5

http://media.pragprog.com/titles/bksap2/code/Pivot%2Fanti%2Fconditional-agg.sql
http://media.pragprog.com/titles/bksap2/code/Pivot%2Fanti%2Ffilter.sql
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

BETWEEN '2025-01-01' AND '2025-02-01') AS "2025-01",
COUNT(*) FILTER (WHERE created_at

BETWEEN '2025-02-01' AND '2025-03-01') AS "2025-02"
FROM comment;

As of this writing, other brands of SQL products haven’t implemented the
FILTER clause yet, but check the release notes, because they might implement
it in a future update.

Vendor-Specific Solutions
This section is about non-standard, proprietary solutions implemented by
some SQL vendors. Proprietary solutions are not in the SQL standard, so
they are less likely to be adopted by other SQL products. In some cases, a
proprietary feature may even be deprecated by the vendor who implemented
it, if a similar standard solution becomes mainstream.

PostgreSQL developed a CROSSTAB() function to help programmers write queries
that map rows to columns. The crosstab is not truly dynamic, because you
must still specify the columns. The following query shows how you can use
the CROSSTAB() function for the example of reporting comments per month.

Pivot/anti/postgresql-crosstab.sql
-- Enable the tablefunc extension before using CROSSTAB().
CREATE EXTENSION IF NOT EXISTS tablefunc;

SELECT * FROM CROSSTAB(
'SELECT NULL, TO_CHAR(created_at, ''YYYY-MM''), COUNT(*) FROM comment
GROUP BY TO_CHAR(created_at, ''YYYY-MM'') ORDER BY 2'

) AS ct(row_name TEXT,
"2022-01" BIGINT, "2022-02" BIGINT, "2022-03" BIGINT, -- ...
"2024-12" BIGINT, "2025-01" BIGINT, "2025-02" BIGINT);

Several other brands of RDBMS, including Microsoft SQL Server, Oracle, and
Snowflake, use a PIVOT keyword. Each brand has implemented it differently.

Pivot/anti/microsoft-pivot.sql
SELECT 'Count' AS CommentsPerMonth,

[2022-01], [2022-02], [2022-03], [2024-12], [2025-01], [2025-02]
FROM (

SELECT FORMAT([created_at], 'yyyy-MM') AS ym, comment_id
FROM comment

) AS SourceTable
PIVOT (

COUNT(comment_id) FOR ym IN
([2022-01], [2022-02], [2022-03], [2024-12], [2025-01], [2025-02])

) AS PivotTable;

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap2/code/Pivot%2Fanti%2Fpostgresql-crosstab.sql
http://media.pragprog.com/titles/bksap2/code/Pivot%2Fanti%2Fmicrosoft-pivot.sql
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

None of the solutions in this antipattern section accomplish the goal of
accommodating new data dynamically, except Snowflake’s implementation
of PIVOT or Oracle’s implementation of PIVOT XML.

How to Recognize the Antipattern
• “How can I write a query that returns a dynamic number of columns, one

for each value?”

This question may be asked in different ways, but the answer is always
the same—aside from the use of wildcards, SQL cannot return a dynamic
set of columns.

Legitimate Uses of the Antipattern
You can use a workaround to simulate a dynamic set of columns, by running
a query that returns a single column, which formats a dynamic set of values
as a JSON document:

Pivot/soln/json-objectagg.sql
SELECT JSONB_OBJECT_AGG(ym, count)
FROM (

SELECT TO_CHAR(created_at, 'YYYY-MM'), COUNT(*)
FROM comment
GROUP BY TO_CHAR(created_at, 'YYYY-MM')

) AS t(ym, count);

The result of the preceding query is a single JSON column, with the year-
month strings as object keys, and the counts as object values:

{
"2022-01" : 1234576, "2022-02" : 2048327, "2022-03" : 6060842, ...
"2024-12" : 8675309, "2025-01" : 11041357, "2025-02": 12345678

}

Your client application fetches this as a single string, not as individual
columns of a query result. To separate the JSON object into a data structure
the client application can use, explode the string. For example, in Python,
you could use json.loads() to convert a string containing JSON into a dict.

• Click HERE to purchase this book now. discuss

How to Recognize the Antipattern • 7

http://media.pragprog.com/titles/bksap2/code/Pivot%2Fsoln%2Fjson-objectagg.sql
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

