
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Your pager suddenly begins blaring, which means one of the alerts on the
database server has been triggered. Checking the infrastructure dashboard,
you see that the query traffic has suddenly doubled, spiking to 35,000 queries
per second. You didn’t know it could go that high on this server.

“Did anyone deploy a code change that could increase the query rate?” you
ask quickly in the developers’ chatroom.

A few minutes pass.

Finally a curt reply appears from Stas, the most sullen and uncommunicative
member of the developer team. “No code change.”

“Well, someone changed something,” you continue.

“I doubled the number of app instances,” Stas writes.

The architecture of Visage has one main database instance, but 15 application
servers—now 30 application servers—each running an instance of the same
code. The applications handle the web requests in parallel, but they all connect
to the same main database. This has worked well enough up until now, but
every database has its limits.

“How did that double the rate of queries?” you ask. “I understand it increases
the capacity for handling traffic, but it shouldn’t cause an immediate doubling
of query traffic. I’d expect it to increase gradually.”

Stas responds only with an emoji of a man shrugging his shoulders.

You investigate the query logs of the database server, and discover that almost
all of the queries are the same, something like the following:

SELECT * FROM post
WHERE updated_at > NOW() - INTERVAL '1' MINUTE

AND notified_at IS NULL

This query is accounting for more than 97% of the load on the
database—sometimes many instances of the query are running concurrently.

Why is one query being run a thousand times per second by every application
instance?

Objective: Notify of Changes to Data
It’s fruitless to get Stas to explain, but eventually by digging through git
commit logs and long-forgotten software design documents, you find out the
purpose of the mysterious query.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

When posts are written in an interactive web site like Visage, users want to
be notified. But as the number of users increases, sending notifications gets
more costly. No one wants to wait for notifications to go out when they are
simply saving a post.

So the developers of Visage decided to process notifications asynchronously.
That way, the user saving their post immediately sees that it’s successful,
while the Visage backend application begins sending notifications to other
users about the new content.

Of course, the other part of this objective is that notifications are timely. The
backend code needs to know as quickly as possible when it’s time to notify
users, and it needs to scale up to send notifications to all users promptly.

That sets the stage for a number of problems.

Antipattern: Polling for Changes
As you read through the history of the code revisions, you piece together how
earlier developers like Stas designed the back-end code to query to check for
new posts, then notify users of the new content.

Back-End Code Version 1
The following is how the first version of this code looked.

Polling/anti/backend-polling-v1.py
while True:

with conn:

with conn.cursor() as cur:

cur.execute("""
SELECT post_id FROM post
WHERE updated_at > NOW() - INTERVAL '1' MINUTE
AND notified_at IS NULL

""")

posts = cur.fetchall()

for post in posts:
post_id = post[0]

process_notifications(post_id)

cur.execute("""
UPDATE post SET notified_at = NOW()
WHERE post_id = %(post_id)s

""", {'post_id': post_id})

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap2/code/Polling%2Fanti%2Fbackend-polling-v1.py
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

It queries for posts for which it hasn’t sent notifications (notified_at IS NULL), and
for each one, calls a function which you can assume sends notifications to
the users who want them. Then it updates notified_at to the current timestamp,
so the next time it checks, it’ll skip that post.

Once the notifications have been sent and the posts updated, it’s time to
check again, so the loop iterates to the top. This is called polling the database.

Now you see why the query you observed runs so frequently. Suppose the
query itself is well optimized and takes only 10 milliseconds. The time for the
loop code is negligible. So even if no one is writing new posts in Visage, the
loop checking for new posts will iterate as much as 100 times per second. It
can’t slow down, because when someone eventually does write a new post,
the requirement is to send out notifications with as little delay as possible.

Back-End Code Version 2
The next revision of the code is almost identical, except it adds a line to the
end of the loop to sleep for 60 seconds, to delay before the next query runs.
This limited the load caused by the queries checking for unprocessed posts.

Polling/anti/backend-polling-v2.py
time.sleep(60)

But the next day, the line was changed to a low duration:

Polling/anti/backend-polling-v2.py
time.sleep(1)

And then increased again:

Polling/anti/backend-polling-v2.py
time.sleep(10)

And finally changed to a line that reads the sleep duration value from an
environment variable. Subsequently the duration could have been changed
any number of times without changing code.

Polling/anti/backend-polling-v2.py
if "VISAGE_CHECK_DELAY" in os.environ:

time.sleep(int(os.environ["VISAGE_CHECK_DELAY"]))

What’s going on? You imagine there must have been numerous discussions
about the best value for the sleep. Querying too frequently caused high load
on the database. Querying too infrequently caused users to be delayed in
getting their notifications. No value could solve both problems.

• Click HERE to purchase this book now. discuss

Antipattern: Polling for Changes • 5

http://media.pragprog.com/titles/bksap2/code/Polling%2Fanti%2Fbackend-polling-v2.py
http://media.pragprog.com/titles/bksap2/code/Polling%2Fanti%2Fbackend-polling-v2.py
http://media.pragprog.com/titles/bksap2/code/Polling%2Fanti%2Fbackend-polling-v2.py
http://media.pragprog.com/titles/bksap2/code/Polling%2Fanti%2Fbackend-polling-v2.py
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

Back-End Code Version 3
There was a final change to the code. As the popularity of Visage kept
increasing, more posts were written and more users wanted to be notified. A
single function looping over posts and sending notifications serially couldn’t
keep up. So the code was refactored so that multiple back-end threads could
work in parallel.

Polling/anti/backend-polling-v3.py
while True:

with conn:

with conn.cursor() as cur:

cur.execute("""
SELECT post_id FROM post
WHERE updated_at > NOW() - INTERVAL '1' MINUTE
AND notified_at IS NULL

FOR NO KEY UPDATE
SKIP LOCKED
LIMIT 1

""")

post = cur.fetchone()

if post is not None:
post_id = post[0]

process_notifications(post_id)

cur.execute("""
UPDATE post SET notified_at = NOW()
WHERE post_id = %(post_id)s

""", {'post_id': post_id})

The query in the preceding code looks different in the following ways:

• The FOR NO KEY UPDATE clause means it locks rows that it examines. The NO
KEY part is a specific feature of PostgreSQL that allows insertion of child
rows that reference the locked row. For example, another session inserting
a new row in comment would have to wait if it references a row in post locked
with FOR UPDATE, but it would not wait if the row in post were locked with
FOR NO KEY UPDATE.

• The SKIP LOCKED clause means if the query tries to examine a row and can’t
immediately lock it because it’s already locked by another instance, the
query will skip the row and move on to examine the next row, until it
finds a row that isn’t locked. This avoids any delay from a lock-wait.

• The LIMIT 1 clause means the query stops examining rows after it success-
fully reads and locks one row.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap2/code/Polling%2Fanti%2Fbackend-polling-v3.py
http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

This modified query allows multiple instances to run concurrently. Which
instance reserves a given row doesn’t matter; what matters is that no row is
read by more than one instance. Together this design is effectively like a
queue, in that each row is processed once by one of the back-end instances.
After sending notifications for the locked row, the code commits the transac-
tion, and committing automatically releases the lock.

If new posts are being added faster than the back-end instances can keep up
with, then more instances can be started. They’re simply Python scripts, and
any number of them can be run on a given application server. You find that
the current application server starts ten instances of the new post checker
script.

Again, this explains why you saw the query run so frequently, and why you
sometimes saw many of the same query running concurrently. As more and
more back-end instances are added to handle the traffic, they add more
database sessions running the same query. Each server is configured to run
ten such instances, and Stas deployed 15 additional application servers. Now
there’s a total of 300 back-end instances over 30 servers, each running a loop
to check repeatedly for new posts. The default delay in the loop is zero, so
every one of the instances is looping as fast as it can.

Even if the query is well optimized, it’s no longer a mystery why it accounts
for 97% of the query traffic.

You still have the problem of how to reduce that load, because the high traffic
at this level is consuming so much processing power on the database server
that it’s degrading performance for all queries—including the remaining 3%
of queries which serve the other functionality for Visage.

Shortly you’ll see how you can make notifications happen in a timely way,
without using polling queries that overload the database.

• Click HERE to purchase this book now. discuss

Antipattern: Polling for Changes • 7

http://pragprog.com/titles/bksap2
http://forums.pragprog.com/forums/bksap2

