Extracted from:

SQL Antipatterns

Avoiding the Pitfalls of Database Programming

This PDF file contains pages extracted from SQL Antipatterns, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.
Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

The)
Pragmatic
ograrminers

SQL Antipatter

Avoiding the Pitfalls of
Database Programming

Bill Karwin &

\ Edited by Jacquelyn Carter

SQL Antipatterns

Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2010 Bill Karwin.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-55-5

Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—March 2012

http://pragprog.com

In March 2010, serial computer hacker Albert Gonzalez was convicted for his
role in the largest identity theft in history. He acquired an estimated
130 million credit and debit card numbers by hacking into ATM machines
and payment systems of several major retail store chains and the credit-card
processing companies that serve them.

Gonzales broke the previous record, which he also held, for stealing
45.6 million credit and debit card numbers in 2006. He performed that earlier
crime by exploiting vulnerable wireless networks.

How did Gonzalez nearly triple his own record? We imagine a daring plot from
a James Bond movie, with black-clad agents rappelling down elevators shafts,
using supercomputers to crack state-of-the-art encrypted passwords, or
sabotaging electrical power to an entire city.

The indictment describes a more mundane reality. Gonzalez exploited a vul-
nerability that is one of the most common security weaknesses on the Internet.
He was able to use an attack technique called SQL Injection to gain privileged
access to upload files to the corporate victims’ servers. After Gonzalez and
his coconspirators gained this access, the indictment states:'

Executing the Attacks: The Malware

...they would install “sniffer” programs that would capture credit and debit card numbers, corre-
sponding Card Data, and other information on a real-time basis as the information moved through
the Corporate Victims' credit and debit card processing networks, and then periodically transmit
that information to the coconspirators.

The retailers whose websites Gonzalez attacked have said that they've made
changes to correct these security holes. However, they've plugged only one
hole, while new web applications are created every day that contain other
holes. SQL Injection attacks remain an easy target for hackers, because
software developers don’t understand the nature of the vulnerability or how
to write code to prevent it.

21.1 Objective: Write Dynamic SQL Queries

SQL is intended to be used in concert with application code. When you build
SQL queries as strings and combine application variables into the string, this
is commonly called dynamic SQL.”

1. http://voices.washingtonpost.com/securityfix/heartlandindictment.pdf

2. Technically, any query parsed at runtime is dynamic SQL, but in common usage, it
describes SQL that includes variable data.

« Click HERE to purchase this book now. discuss

http://voices.washingtonpost.com/securityfix/heartlandIndictment.pdf
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

SQL-Injection/obj/dynamic-sql.php

<?php

$sql = "SELECT * FROM Bugs WHERE bug id = $bug id";
$stmt = $pdo->query($sql);

This simple example shows interpolating a PHP variable into a string. We
intend that $bug_id is an integer so that by the time the database receives the
query, the value of $bug_id is part of the query.

Dynamic SQL queries are a natural way to get the most out of a database.
When you use application data to specify how you want to query a database,
you're using SQL as a two-way language. Your application is having a kind
of dialogue with the database.

However, it’s not too hard to make your software do tasks that you want it
to do—the harder challenge is making your software secure so it doesn’t allow
actions that you don’t want it to do. Software defects resulting from SQL
Injection are failures to satisfy the latter.

21.2 Antipattern: Execute Unverified Input As Code

SQL injection happens when you interpolate some content into an SQL query
string and the content modifies the syntax of your query in ways you didn’t
intend. In the classic example of SQL Injection, the value you interpolate into
your string finishes the SQL statement and executes a second complete
statement. For instance, if the value of the $bug id variable is 1234; DELETE
FROM Bugs, the resulting SQL shown earlier would look like this:

SQL-Injection/anti/delete.sql
SELECT * FROM Bugs WHERE bug id = 1234; DELETE FROM Bugs

This type of SQL Injection can be spectacular, as shown in Figure 18, Exploits

dangerous.

Accidents May Happen

Suppose you are writing a web interface to view the bugs database and one
page allows you to view a project based on its name:

SQL-Injection/anti/ohare.php

<?php

$project name = $ REQUEST["name"1;

$sql = "SELECT * FROM Projects WHERE project name = '$project name'";

3. Cartoon by Randall Munroe, used with permission (http://xkcd.com/327/).

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/obj/dynamic-sql.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/delete.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare.php
http://xkcd.com/327/
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Antipattern: Execute Unverified Input As Code * 7

HI, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SONG SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME | WAY — Robert'); DROP T HOPE YOURE HAPPY.
COMPUTER TROUBLE. TABLE Students;-~ 7 d

N N AND T HOPE
) , ~OH. YES. LITTLE < YOUVE LEARNED
m m BOBBY TABLES, L TOSANMIZE YOUR
WE CALL HIM. DATABASE INPUTS.

Figure 18—Exploits of a mom

The trouble begins when your team is hired to develop software for O'Hare
International Airport in Chicago. You naturally give the project a name like
“O’Hare.” How do you submit a request to view the project in your web
application?

http://bugs.example.com/project/view.php?name=0'Hare

Your PHP code takes the value of that request parameter and interpolates it
into the SQL query, but it produces a query that neither you nor the user
intended:

SQL-Injection/anti/ohare.sql
SELECT * FROM Projects WHERE project name = 'O'Hare'

Because a string is terminated by the first quote character it finds, the
resulting expression contains a short string, '0', followed by some extra
characters, Hare', that make no sense in this context. The database can only
report this as a syntax error. This is an honest accident. The risk of anything
bad happening is low, because a statement with a syntax error can’t execute.
The greater risk is that the statement executes without error but does some-
thing you didn’t intend.

The Top Web Security Threat

SQL Injection becomes a greater threat when an attacker can use this to
manipulate your SQL statements. For example, your application may allow
a user to change his or her password:

SQL-Injection/anti/set-password.php

<?php

$password = $ REQUEST["password"];

$userid = $ REQUEST["userid"];

$sql = "UPDATE Accounts SET password hash = SHA2('$password')
WHERE account id = $userid";

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password.php
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

8e

A clever attacker who can guess how the request parameters are used in your
SQL statement can send a carefully chosen string to exploit it:

http://bugs.example.com/setpass?password=xyzzy&userid=123 OR TRUE

After interpolating the string from the userid parameter into your SQL expres-
sion, the string has changed the syntax of the statement. Now it changes the
password for every account in the database, not for one specific account:
SQL-Injection/anti/set-password.sql

UPDATE Accounts SET password hash = SHA2('xyzzy')
WHERE account id = 123 OR TRUE;

This is key to understanding SQL Injection and also how to combat it: SQL
Injection works by changing the syntax of the SQL statement before the
statement is parsed. As long as you insert dynamic portions to the statement
before it’s parsed, you have a risk of SQL Injection.

There are countless ways a maliciously chosen string can alter the behavior
of your SQL statements. It's limited only by the imagination of the attacker
and your ability to protect your SQL statements.

The Quest for a Cure

Now that we know the threat of SQL Injection, the next natural question is,
what do we need to do to protect code from being exploited? You may have
read a blog or an article that described some single technique and claimed
it's the universal remedy against SQL Injection. In reality, none of these
techniques is proof against all forms of SQL Injection, so you need to use all
of them in different cases.

Escaping Values

The oldest way to protect SQL queries from accidental unmatched quote
characters is to escape any quote characters to prevent them from becoming
the end of the quoted string. In standard SQL, you can use two quote charac-
ters to make one literal quote character:

SQL-Injection/anti/ohare-escape.sql
SELECT * FROM Projects WHERE project name = 'O''Hare'

Most brands of database also support the backslash to escape the following
quote character, just like most other programming languages do:

SQL-Injection/anti/ohare-escape.sql
SELECT * FROM Projects WHERE project name = 'O\'Hare'

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare-escape.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare-escape.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Antipattern: Execute Unverified Input As Code * 9

The idea is that you transform application data before you interpolate it into
SQL strings. Most SQL programming interfaces provide a convenience function.
For example, in PHP’s PDO extension, use the quote() function to both delimit
a string with quote characters and escape any literal quote characters within
the string.

SQL-Injection/anti/ohare-escape.php

<?php

$project name = $pdo->quote($ REQUEST["name"]);

$sql = "SELECT * FROM Projects WHERE project name = $project name";

This technique can reduce the risk of SQL Injection resulting from unmatched
quote characters within the dynamic content. But it doesn’t work as well for
nonstring content.

SQL-Injection/anti/set-password-escape.php

<?php

$password = $pdo->quote($ REQUEST["password"]);

$userid = $pdo->quote($ REQUEST["userid"]);

$sql = "UPDATE Accounts SET password hash = SHA2($password)
WHERE account id = $userid";

SQL-Injection/anti/set-password-escape.sql
UPDATE Accounts SET password hash = SHA2('xyzzy')
WHERE account id = '123 OR TRUE'

You can’t compare a numeric column directly to a string containing digits in
all brands of database. Some databases may implicitly cast the string to a
sensible numeric equivalent, but in standard SQL you have to use the CAST()
function deliberately to convert a string to a numeric data type.

There are also obscure corner cases where strings in non-ASCII character
sets can pass through a function intended to escape the quote characters
but leave unescaped quote characters intact.”

Query Parameters

The solution most frequently cited as a panacea to SQL Injection is to use
query parameters. Instead of interpolating dynamic values into your SQL
string, leave parameter placeholders in the string as you prepare the query.
Then provide a parameter value as you execute the prepared query.

SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Projects WHERE project name = ?");
$params = array($ REQUEST["name"]);

$stmt->execute($params);

4. See http://bugs.mysql.com/8378 for an example.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare-escape.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password-escape.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password-escape.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://bugs.mysql.com/8378
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

10 ¢

Many programmers recommend this solution because you don’t have to escape
dynamic content or worry about flawed escaping functions. In fact, query
parameters are a very strong defense against SQL Injection. But parameters
aren’t a universal solution because the value of a query parameter is always
interpreted as a single literal value.

* No lists of values can be a single parameter:

SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Bugs WHERE bug id IN (?)");
$stmt->execute(array("1234,3456,5678"));

This works as though you provided a single string value composed of
digits and commas, which doesn’t work the same as a series of integers:

SQL-Injection/anti/parameter.sql
SELECT * FROM Bugs WHERE bug id IN ('1234,3456,5678')

¢ No table identifier can be a parameter:

SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM ? WHERE bug id = 1234");
$stmt->execute(array("Bugs"));

This works as though you had entered a string literal in place of the table
name, which is simply a syntax error:

SQL-Injection/anti/parameter.sql
SELECT * FROM 'Bugs' WHERE bug id = 1234

¢ No column identifier can be a parameter:

SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Bugs ORDER BY ?");
$stmt->execute(array("date reported"));

In this example, the sort is a no-op, because the expression is a constant
string, the same on every row:

SQL-Injection/anti/parameter.sql
SELECT * FROM Bugs ORDER BY 'date reported';

* No SQL keyword can be a parameter:

SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Bugs ORDER BY date reported ?");
$stmt->execute(array("DESC"));

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Antipattern: Execute Unverified Input As Code * 11

The parameter is interpreted as a literal string, not an SQL keyword. In
this example, the result is a syntax error.

SQL-Injection/anti/parameter.sql
SELECT * FROM Bugs ORDER BY date reported 'DESC'

Stored Procedures

Use of stored procedures is another method that many software developers
claim is proof against SQL Injection vulnerabilities. Typically, stored proce-
dures contain fixed SQL statements, parsed when you define the procedure.

However, it’s possible to use dynamic SQL in stored procedures unsafely. In
the following example, the input_userid argument is interpolated into the SQL
query verbatim, which is unsafe.

SQL-Injection/anti/procedure.sql
CREATE PROCEDURE UpdatePassword(input password VARCHAR(20),
input userid VARCHAR(20))
BEGIN
SET @sql = CONCAT('UPDATE Accounts
SET password hash = SHA2(', QUOTE(input password), ')
WHERE account id = ', input userid);
PREPARE stmt FROM @sql;
EXECUTE stmt;
END

Using dynamic SQL in a stored procedure is no more and no less safe than
using dynamic SQL in application code. The input_userid argument can contain
harmful content and produce an unsafe SQL statement:

SQL-Injection/anti/set-password.sql
UPDATE Accounts SET password hash = SHA2('xyzzy')
WHERE account id = 123 OR TRUE;

Data Access Frameworks

You might see advocates of data access frameworks claim that their library
protects your code from SQL Injection risks. This is a false claim for any
framework that allows you to write SQL statements as strings.

Practice Good Hygiene

After | gave a presentation on a PHP data access framework that | had developed, a member of
the audience approached me and asked, “Does your framework prevent SQL Injection?” lanswered
that it provides functions for quoting strings and using query parameters.

The young man looked puzzled. “But can it prevent SQL Injection?” he repeated. He was looking
for an automatic way to ensure that he doesn’t make a mistake that he doesn’t know how to
recognize himself.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/procedure.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

What Was My Complete Query?

Many people think that using SQL query parameters is a way to quote values into
an SQL statement automatically. This isn’t accurate, and thinking about query
parameters this way leads to misunderstanding about how they work.

The RDBMS server parses your SQL as you prepare the query. After this, nothing
can change the syntax of that SQL query.

You provide values as you execute a prepared query. Each value you provide is used
for each placeholder, one for one.

You can execute a prepared query again, substituting new parameter values for the
old values. So, the RDBMS must keep track of the query and the parameter values
separately. This is good for security.

This means that if you retrieve the prepared SQL query string, it doesn’t contain any
parameter values. It would be handy to see the SQL statement including parameter
values if you're debugging or logging queries, but these values are never combined
with the query in its human-readable SQL form.

The best way to debug your dynamic SQL statements is to log both the statement
with parameter placeholders at prepare time and the parameter values at execute
time.

I told him the framework prevents SQL Injection like a toothbrush prevents cavities. You have
to use it consistently to get the benefit.

No framework can force you to write safe SQL code. A framework may provide
convenience functions to help you, but it’s easy to bypass these functions
and use common string manipulation to build an SQL statement unsafely.

21.3 How to Recognize the Antipattern

Practically every database application builds SQL statements dynamically. If
you build any portion of an SQL statement by concatenating strings together
or interpolating variables into strings, then the statement potentially exposes
your application to SQL Injection attacks. SQL Injection vulnerabilities are
so common that you should assume that you have some in any application
that uses SQL, unless you've just completed a code review specifically to find
and correct these issues.

21.4 Legitimate Uses of the Antipattern

This antipattern is different from most of the others in this book, in that there
aren’t any legitimate reasons for allowing your application to have a security

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Legitimate Uses of the Antipattern ® 13

vulnerability because of SQL Injection. It’s your responsibility as a software
developer to write code defensively and to help your peers to do so as well.

Software is only as secure as its weakest link—make sure you're not respon-
sible for that weakest link!

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

If you like to watch monster movies, you know that creatures like to hide behind the
driver seat of your car and grab you after you get in. The lesson is that you shouldn’t
assume there’s no danger inside a familiar space like your car.

SQL Injection can take indirect forms. Even if you insert user-supplied data safely
using query parameters, you might use that data later as you form dynamic SQL
queries:

<?php

$sqll = "SELECT last name FROM Accounts WHERE account id = 123";

$row = $pdo->query($sqll)->fetch();

$sql2 = "SELECT * FROM Bugs WHERE MATCH(description) AGAINST ('"
. $row["last name"] . "')";

What would happen in the previous query if the user had spelled their name as O’Hara
—or if they had deliberately entered their name to contain SQL syntax?

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

