
Extracted from:

SQL Antipatterns
Avoiding the Pitfalls of Database Programming

This PDF file contains pages extracted from SQL Antipatterns, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

SQL Antipatterns
Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2010 Bill Karwin.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-55-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—March 2012

http://pragprog.com

Suppose you work as a software developer for a famous website for science
and technology news.

This is a modern website, so readers can contribute comments and even reply
to each other, forming threads of discussion that branch and extend deeply.
You choose a simple solution to track these reply chains: each comment ref-
erences the comment to which it replies.

Trees/intro/parent.sql
CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,
parent_id BIGINT UNSIGNED,
comment TEXT NOT NULL,
FOREIGN KEY (parent_id) REFERENCES Comments(comment_id)

);

It soon becomes clear, however, that it’s hard to retrieve a long chain of replies
in a single SQL query. You can get only the immediate children or perhaps
join with the grandchildren, to a fixed depth. But the threads can have an
unlimited depth. You would need to run many SQL queries to get all the
comments in a given thread.

The other idea you have is to retrieve all the comments and assemble them
into tree data structures in application memory, using traditional tree algo-
rithms you learned in school. But the publishers of the website have told you
that they publish dozens of articles every day, and each article can have
hundreds of comments. Sorting through millions of comments every time
someone views the website is impractical.

There must be a better way to store the threads of comments so you can
retrieve a whole discussion thread simply and efficiently.

3.1 Objective: Store and Query Hierarchies

It’s common for data to have recursive relationships. Data may be organized
in a treelike or hierarchical way. In a tree data structure, each entry is called
a node. A node may have a number of children and one parent. The top node,
which has no parent, is called the root. The nodes at the bottom, which have
no children, are called leaves. The nodes in the middle are simply nonleaf
nodes.

In the previous hierarchical data, you may need to query individual items,
related subsets of the collection, or the whole collection. Examples of tree-
oriented data structures include the following:

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/Trees/intro/parent.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

The relationship of employees to managers is the textbook
example of tree-structured data. It appears in countless

Organization
chart:

books and articles on SQL. In an organizational chart, each
employee has a manager, who represents the employee’s
parent in a tree structure. The manager is also an employee.

As seen in the introduction, a tree structure may be used for
the chain of comments in reply to other comments. In the
tree, the children of a comment node are its replies.

Threaded
discussion:

In this chapter, we’ll use the threaded discussion example to show the
antipattern and its solutions.

3.2 Antipattern: Always Depend on One’s Parent

The naive solution commonly shown in books and articles is to add a column
parent_id. This column references another comment in the same table, and you
can create a foreign key constraint to enforce this relationship. The SQL to
define this table is shown next, and the entity-relationship diagram is shown
in Figure 4, Adjacency list entity-relationship diagram, on page 7.

Trees/anti/adjacency-list.sql
CREATE TABLE Comments (
comment_id SERIAL PRIMARY KEY,
parent_id BIGINT UNSIGNED,
bug_id BIGINT UNSIGNED NOT NULL,
author BIGINT UNSIGNED NOT NULL,
comment_date DATETIME NOT NULL,
comment TEXT NOT NULL,
FOREIGN KEY (parent_id) REFERENCES Comments(comment_id),
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

This design is called Adjacency List. It’s probably the most common design
software developers use to store hierarchical data. The following is some
sample data to show a hierarchy of comments, and an illustration of the tree
is shown in Figure 5, Threaded comments illustration, on page 8.

commentauthorparent_idcomment_id

What’s the cause of this bug?FranNULL1

I think it’s a null pointer.Ollie12

No, I checked for that.Fran23

We need to check for invalid input.Kukla14

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/Trees/anti/adjacency-list.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Bugs

Comments

Figure 4—Adjacency list entity-relationship diagram

commentauthorparent_idcomment_id

Yes, that’s a bug.Ollie45

Yes, please add a check.Fran46

That fixed it.Kukla67

Querying a Tree with Adjacency List

Adjacency List can be an antipattern when it’s the default choice of so many
developers yet it fails to be a solution for one of the most common tasks you
need to do with a tree: query all descendants.

You can retrieve a comment and its immediate children using a relatively
simple query:

Trees/anti/parent.sql
SELECT c1.*, c2.*
FROM Comments c1 LEFT OUTER JOIN Comments c2

ON c2.parent_id = c1.comment_id;

However, this queries only two levels of the tree. One characteristic of a tree
is that it can extend to any depth, so you need to be able to query the
descendents without regard to the number of levels. For example, you may
need to compute the COUNT() of comments in the thread or the SUM() of the cost
of parts in a mechanical assembly.

This kind of query is awkward when you use Adjacency List, because each
level of the tree corresponds to another join, and the number of joins in an
SQL query must be fixed. The following query retrieves a tree of depth up to
four but cannot retrieve the tree beyond that depth:

Trees/anti/ancestors.sql
SELECT c1.*, c2.*, c3.*, c4.*

• Click HERE to purchase this book now. discuss

Antipattern: Always Depend on One’s Parent • 7

http://media.pragprog.com/titles/bksqla/code/Trees/anti/parent.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/ancestors.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Figure 5—Threaded comments illustration

FROM Comments c1 -- 1st level
LEFT OUTER JOIN Comments c2

ON c2.parent_id = c1.comment_id -- 2nd level
LEFT OUTER JOIN Comments c3

ON c3.parent_id = c2.comment_id -- 3rd level
LEFT OUTER JOIN Comments c4

ON c4.parent_id = c3.comment_id; -- 4th level

This query is also awkward because it includes descendants from progressively
deeper levels by adding more columns. This makes it hard to compute an
aggregate such as COUNT().

Another way to query a tree structure from Adjacency List is to retrieve all
the rows in the collection and instead reconstruct the hierarchy in the appli-
cation before you can use it like a tree.

Trees/anti/all-comments.sql
SELECT * FROM Comments WHERE bug_id = 1234;

Copying a large volume of data from the database to the application before
you can analyze it is grossly inefficient. You might need only a subtree, not
the whole tree from its top. You might require only aggregate information
about the data, such as the COUNT() of comments.

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/Trees/anti/all-comments.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Maintaining a Tree with Adjacency List

Admittedly, some operations are simple to accomplish with Adjacency List,
such as adding a new leaf node:

Trees/anti/insert.sql
INSERT INTO Comments (bug_id, parent_id, author, comment)

VALUES (1234, 7, 'Kukla', 'Thanks!');

Relocating a single node or a subtree is also easy:

Trees/anti/update.sql
UPDATE Comments SET parent_id = 3 WHERE comment_id = 6;

However, deleting a node from a tree is more complex. If you want to delete
an entire subtree, you have to issue multiple queries to find all descendants.
Then remove the descendants from the lowest level up to satisfy the foreign
key integrity.

Trees/anti/delete-subtree.sql
SELECT comment_id FROM Comments WHERE parent_id = 4; -- returns 5 and 6
SELECT comment_id FROM Comments WHERE parent_id = 5; -- returns none
SELECT comment_id FROM Comments WHERE parent_id = 6; -- returns 7
SELECT comment_id FROM Comments WHERE parent_id = 7; -- returns none

DELETE FROM Comments WHERE comment_id IN (7);
DELETE FROM Comments WHERE comment_id IN (5, 6);
DELETE FROM Comments WHERE comment_id = 4;

You can use a foreign key with the ON DELETE CASCADE modifier to automate
this, as long as you know you always want to delete the descendants instead
of promoting or relocating them.

If you instead want to delete a nonleaf node and promote its children or move
them to another place in the tree, you first need to change the parent_id of
children and then delete the desired node.

Trees/anti/delete-non-leaf.sql
SELECT parent_id FROM Comments WHERE comment_id = 6; -- returns 4
UPDATE Comments SET parent_id = 4 WHERE parent_id = 6;
DELETE FROM Comments WHERE comment_id = 6;

These are examples of operations that require multiple steps when you use
the Adjacency List design. That’s a lot of code you have to write for tasks that
a database should make simpler and more efficient.

• Click HERE to purchase this book now. discuss

Antipattern: Always Depend on One’s Parent • 9

http://media.pragprog.com/titles/bksqla/code/Trees/anti/insert.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/update.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/delete-subtree.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/delete-non-leaf.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

3.3 How to Recognize the Antipattern

If you hear a question like the following, it’s a clue that the Naive Trees
antipattern is being employed:

• “How many levels do we need to support in trees?”

You’re struggling to get all descendants or all ancestors of a node, without
using a recursive query. You could compromise by supporting only trees
of a limited depth, but the next natural question is, how deep is deep
enough?

• “I dread having to touch the code that manages the tree data structures.”

You’ve adopted one of the more sophisticated solutions of managing
hierarchies, but you’re using the wrong one. Each technique makes some
tasks easier, but usually at the cost of other tasks that become harder.
You may have chosen a solution that isn’t the best choice for the way you
need to use hierarchies in your application.

• “I need to run a script periodically to clean up the orphaned rows in the
trees.”

Your application creates disconnected nodes in the tree as it deletes
nonleaf nodes. When you store complex data structures in a database,
you need to keep the structure in a consistent, valid state after any change.
You can use one of the solutions presented later in this chapter, along
with triggers and cascading foreign key constraints, to store data struc-
tures that are resilient instead of fragile.

3.4 Legitimate Uses of the Antipattern

The Adjacency List design might be just fine to support the work you need to
do in your application. The strength of the Adjacency List design is retrieving
the direct parent or child of a given node. It’s also easy to insert rows. If those
operations are all you need to do with your hierarchical data, then Adjacency
List can work well for you.

Don’t Over-Engineer
I wrote an inventory-tracking application for a computer data center. Some equipment was
installed inside computers; for example, a caching disk controller was installed in a rackmount
server, and extra memory modules were installed on the disk controller.

10 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

I needed an SQL solution to track the usage of hierarchical collections easily. But I also needed
to track each individual piece of equipment to produce accounting reports of equipment utiliza-
tion, amortization, and return on investment.

The manager said the collections could have subcollections, and thus the tree could in theory
descend to any depth. It took quite a few weeks to perfect the code for manipulating trees in
the database storage, user interface, administration, and reporting.

In practice, however, the inventory application never needed to create a grouping of equipment
with a tree deeper than a single parent-child relationship. If my client had acknowledged that
this would be enough to model his inventory requirements, we could have saved a lot of work.

Some brands of RDBMS support extensions to SQL to support hierarchies
stored in the Adjacency List format. The SQL-99 standard defines recursive
query syntax using the WITH keyword followed by a common table expression.

Trees/legit/cte.sql
WITH CommentTree

(comment_id, bug_id, parent_id, author, comment, depth)
AS (

SELECT *, 0 AS depth FROM Comments
WHERE parent_id IS NULL

UNION ALL
SELECT c.*, ct.depth+1 AS depth FROM CommentTree ct
JOIN Comments c ON (ct.comment_id = c.parent_id)

)
SELECT * FROM CommentTree WHERE bug_id = 1234;

Microsoft SQL Server 2005, Oracle 11g, IBM DB2, and PostgreSQL 8.4 support
recursive queries using common table expressions, as shown earlier.

MySQL, SQLite, and Informix are examples of database brands that don’t
support this syntax yet. It’s the same for Oracle 10g, which is still widely
used. In the future, we might assume recursive query syntax will become
available across all popular brands, and then using Adjacency List won’t be
so limiting.

Oracle 9i and 10g support the WITH clause, but not for recursive queries.
Instead, there is proprietary syntax: START WITH and CONNECT BY PRIOR. You can
use this syntax to perform recursive queries:

Trees/legit/connect-by.sql
SELECT * FROM Comments

START WITH comment_id = 9876

CONNECT BY PRIOR parent_id = comment_id;

• Click HERE to purchase this book now. discuss

Legitimate Uses of the Antipattern • 11

http://media.pragprog.com/titles/bksqla/code/Trees/legit/cte.sql
http://media.pragprog.com/titles/bksqla/code/Trees/legit/connect-by.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

