
Extracted from:

Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

This PDF file contains pages extracted from Python Testing with pytest, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-860-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 6

Markers
In pytest, markers are a way to tell pytest there’s something special about a
particular test. You can think of them like tags or labels. If some tests are
slow, you can mark them with @pytest.mark.slow and have pytest skip those
tests when you’re in a hurry. You can pick a handful of tests out of a test
suite and mark them with @pytest.mark.smoke and run those as the first stage
of a testing pipeline in a continuous integration system. Really, for any reason
you might have for separating out some tests, you can use markers.

pytest includes a handful of builtin markers that modify the behavior of how
tests are run. We’ve used one already, @pytest.mark.parametrize, in Parametrizing
Functions, on page ?. In addition to the custom tag-like markers we can
create and add to our tests, the builtin markers tell pytest to do something
special with the marked tests.

In this chapter, we’re going to explore both types of markers: the builtins that
change behavior, and the custom markers we can create to select which tests
to run. We can also use markers to pass information to a fixture used by a
test. We’ll take a look at that, too.

Using Builtin Markers
pytest’s builtin markers are used to modify the behavior of how tests run. We
explored @pytest.mark.parametrize() in the last chapter. Here’s the full list of the
builtin markers included in pytest as of pytest 6:

• @pytest.mark.filterwarnings(warning): This marker adds a warning filter to the
given test.

• @pytest.mark.skip(reason=None): This marker skips the test with an optional
reason.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

• @pytest.mark.skipif(condition, ..., *, reason): This marker skips the test if any of
the conditions are True.

• @pytest.mark.xfail(condition, ..., *, reason, run=True, raises=None, strict=xfail_strict): This
marker tells pytest that we expect the test to fail.

• @pytest.mark.parametrize(argnames, argvalues, indirect, ids, scope): This marker calls
a test function multiple times, passing in different arguments in turn.

• @pytest.mark.usefixtures(fixturename1, fixturename2, ...): This marker marks tests
as needing all the specified fixtures.

These are the most commonly used of these builtins:

• @pytest.mark.parametrize()
• @pytest.mark.skip()
• @pytest.mark.skipif()
• @pytest.mark.xfail()

We used parametrize() in the last chapter. Let’s go over the other three with
some examples to see how they work.

Skipping Tests with pytest.mark.skip
The skip marker allows us to skip a test. Let’s say we’re thinking of adding the
ability to sort in a future version of the Cards application, so we’d like to have
the Card class support comparisons. We write a test for comparing Card objects
with < like this:

ch6/builtins/test_less_than.py
from cards import Card

def test_less_than():
c1 = Card("a task")
c2 = Card("b task")
assert c1 < c2

def test_equality():
c1 = Card("a task")
c2 = Card("a task")
assert c1 == c2

And it fails:

$ cd /path/to/code/ch6/builtins
$ pytest --tb=short test_less_than.py
========================= test session starts ==========================
collected 2 items

test_less_than.py F. [100%]

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_less_than.py
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

=============================== FAILURES ===============================
____________________________ test_less_than ____________________________
test_less_than.py:6: in test_less_than

assert c1 < c2
E TypeError: '<' not supported between instances of 'Card' and 'Card'
======================= short test summary info ========================
FAILED test_less_than.py::test_less_than - TypeError: '<' not support...
===================== 1 failed, 1 passed in 0.13s ======================

Now the failure isn’t a shortfall of the software; it’s just that we haven’t finished
this feature yet. So what do we do with this test?

One option is to skip it. Let’s do that:

ch6/builtins/test_skip.py
import pytest

@pytest.mark.skip(reason="Card doesn't support < comparison yet")➤

def test_less_than():
c1 = Card("a task")
c2 = Card("b task")
assert c1 < c2

The @pytest.mark.skip() marker tells pytest to skip the test. The reason is optional,
but it’s important to list a reason to help with maintenance later.

When we run skipped tests, they show up as s:

$ pytest test_skip.py
========================= test session starts ==========================
collected 2 items

test_skip.py s. [100%]

===================== 1 passed, 1 skipped in 0.03s =====================

Or as SKIPPED in verbose:

$ pytest -v -ra test_skip.py
========================= test session starts ==========================
collected 2 items

test_skip.py::test_less_than SKIPPED (Card doesn't support <...) [50%]
test_skip.py::test_equality PASSED [100%]

======================= short test summary info ========================
SKIPPED [1] test_skip.py:6: Card doesn't support < comparison yet
===================== 1 passed, 1 skipped in 0.03s =====================

The extra line at the bottom lists the reason we gave in the marker, and is
there because we used the -ra flag in the command line. The -r flag tells
pytest to report reasons for different test results at the end of the session.
You give it a single character that represents the kind of result you want more

• Click HERE to purchase this book now. discuss

Skipping Tests with pytest.mark.skip • 7

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_skip.py
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

information on. The default display is the same as passing in -rfE: f for failed
tests; E for errors. You can see the whole list with pytest --help.

The a in -ra stands for “all except passed.” The -ra flag is therefore the most
useful, as we almost always want to know the reason why certain tests did
not pass.

We can also be more specific and only skip the test if certain conditions are
met. Let’s look at that next.

Skipping Tests Conditionally with pytest.mark.skipif
Let’s say we know we won’t support sorting in the 1.x.x versions of the Cards
application, but will in version 2.x.x. We can tell pytest to skip the test for all
versions of Cards lower than than 2.x.x like this:

ch6/builtins/test_skipif.py
import cards
from packaging.version import parse

@pytest.mark.skipif(
parse(cards.__version__).major < 2,
reason="Card < comparison not supported in 1.x",

)
def test_less_than():

c1 = Card("a task")
c2 = Card("b task")
assert c1 < c2

The skipif marker allows you to pass in as many conditions as you want and
if any of them are true, the test is skipped. In our case, we are using packag-
ing.version.parse to allow us to isolate the major version and compare it against
the number 2.

This example uses a third-party package called packaging. If you want to try
the example, pip install packaging first. version.parse is just one of the many handy
utilities found there. See the packaging documentation1 for more information.

With both the skip and the skipif markers, the test is not actually run. If we
want to run the test anyway, we can use xfail.

Another reason we might want to use skipif is if we have tests that need to be
written differently on different operating systems. We can write separate tests
for each OS and skip on the inappropriate OS.

1. https://packaging.pypa.io/en/latest/version.html

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_skipif.py
https://packaging.pypa.io/en/latest/version.html
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

Expecting Tests to Fail with pytest.mark.xfail
If we want to run all tests, even those that we know will fail, we can use the
xfail marker.

Here’s the full signature for xfail:

@pytest.mark.xfail(condition, ..., *, reason, run=True,
raises=None, strict=xfail_strict)

The first set of parameters to this fixture are the same as skipif. The test is run
anyway, by default, but the run parameter can be used to tell pytest to not
run the test by setting run=False. The raises parameter allows you to provide an
exception type or a tuple of exception types that you want to result in an xfail.
Any other exception will cause the test to fail. strict tells pytest if passing tests
should be marked as XPASS (strict=False) or FAIL, strict=True.

Let’s look at an example:

ch6/builtins/test_xfail.py
@pytest.mark.xfail(

parse(cards.__version__).major < 2,
reason="Card < comparison not supported in 1.x",

)
def test_less_than():

c1 = Card("a task")
c2 = Card("b task")
assert c1 < c2

@pytest.mark.xfail(reason="XPASS demo")
def test_xpass():

c1 = Card("a task")
c2 = Card("a task")
assert c1 == c2

@pytest.mark.xfail(reason="strict demo", strict=True)
def test_xfail_strict():

c1 = Card("a task")
c2 = Card("a task")
assert c1 == c2

We have three tests here: one we know will fail and two we know will pass.
These tests demonstrate both the failure and passing cases of using xfail and
the effect of using strict. The first example also uses the optional condition
parameter, which works like the conditions of skipif.

Here’s what they look like when run:

• Click HERE to purchase this book now. discuss

Expecting Tests to Fail with pytest.mark.xfail • 9

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_xfail.py
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

$ pytest -v -ra test_xfail.py
========================= test session starts ==========================
collected 3 items

test_xfail.py::test_less_than XFAIL (Card < comparison not s...) [33%]
test_xfail.py::test_xpass XPASS (XPASS demo) [66%]
test_xfail.py::test_xfail_strict FAILED [100%]

=============================== FAILURES ===============================
__________________________ test_xfail_strict ___________________________
[XPASS(strict)] strict demo
======================= short test summary info ========================
XFAIL test_xfail.py::test_less_than

Card < comparison not supported in 1.x
XPASS test_xfail.py::test_xpass XPASS demo
FAILED test_xfail.py::test_xfail_strict
=============== 1 failed, 1 xfailed, 1 xpassed in 0.11s ================

For tests marked with xfail:

• Failing tests will result in XFAIL.
• Passing tests (with no strict setting) will result in XPASSED.
• Passing tests with strict=true will result in FAILED.

When a test fails that is marked with xfail, pytest knows exactly what to tell
you: “You were right, it did fail,” which is what it’s saying with XFAIL. For tests
marked with xfail that actually pass, pytest is not quite sure what to tell you.
It could result in XPASSED, which roughly means, “Good news, the test you
thought would fail just passed.” Or it could result in FAILED, or, “You thought
it would fail, but it didn’t. You were wrong.”

So you have to decide. Should your passing xfail tests result in XFAIL? If yes,
leave strict alone. If you want them to be FAILED, then set strict. You can either
set strict as an option to the xfail marker like we did in this example, or you
can set it globally with the xfail_strict=true setting in pytest.ini, which is the main
configuration file for pytest.

A pragmatic reason to always use xfail_strict is because we tend to look closely
at all failed tests. Setting strict makes you look into the the cases where your
test expectations don’t match the code behavior.

There are a couple additional reasons why you might want to use xfail:

• You’re writing tests first, test-driven development style, and are in the
test writing zone, writing a bunch of test cases you know aren’t implement-
ed yet but that you plan on implementing shortly. You can mark the new
behaviors with xfail and remove the xfail gradually as you implement the

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

behavior. This is really my favorite use of xfail. Try to keep the xfail tests
on the feature branch where the feature is being implemented.

Or

• Something breaks, a test (or more) fails, and the person or team that
needs to fix the break can’t work on it right away. Marking the tests as
xfail, strict=true, with the reason written to include the defect/issue report ID
is a decent way to keep the test running, not forget about it, and alert
you when the bug is fixed.

There are also bad reasons to use use xfail or skip. Here’s one:

Suppose you’re just brainstorming behaviors you may or may not want in
future versions. You can mark the tests as xfail or skip just to keep them around
for when you do want to implement the feature. Um, no.

In this case, or similar, try to remember YAGNI (“Ya Aren’t Gonna Need It”),
which comes from Extreme Programming and states: “Always implement
things when you actually need them, never when you just foresee that you
need them.”2 It can be fun and useful to peek ahead and write tests for bits
of functionality you are just about to implement. However, it’s a waste of time
to try to look too far into the future. Don’t do it. Our ultimate goal is to have
all tests pass, and skip and xfail are not passing.

The builtin markers skip, skipif, and xfail are quite handy when you need them,
but can quickly become overused. Just be careful.

Now let’s switch gears and look at markers that we create ourselves to mark
tests we want to run or skip as a group.

2. http://c2.com/xp/YouArentGonnaNeedIt.html

• Click HERE to purchase this book now. discuss

Expecting Tests to Fail with pytest.mark.xfail • 11

http://c2.com/xp/YouArentGonnaNeedIt.html
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

