
Extracted from:

Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

This PDF file contains pages extracted from Python Testing with pytest, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com






Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-860-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Preface
The use of Python is increasing not only in software development, but also
in fields such as data science, machine learning, data analysis, research sci-
ence, finance, and just about all other industries. The growth of Python in
many critical fields also comes with the desire to properly, effectively, and
efficiently put software tests in place to make sure the programs run correctly
and produce the correct results. In addition, more and more software projects
are embracing continuous integration and including an automated testing
phase. There is still a place for exploratory manual testing—but thorough
manual testing of increasingly complex projects is infeasible. Teams need to
be able to trust the tests being run by the continuous integration servers to
tell them if they can trust their software enough to release it.

Enter pytest. pytest is a robust Python testing tool that can be used for all
types and levels of software testing. pytest can be used by development teams,
quality assurance teams, independent testing groups, and individuals prac-
ticing test-driven development, for both commercial and open-source projects.
In fact, projects all over the Internet have switched from unittest or nose to
pytest, including Mozilla and Dropbox. Why? Because pytest offers powerful
features such as assert rewriting, a third-party plugin model, and a powerful
yet simple fixture model that is unmatched in any other testing framework.

Why pytest?
pytest is a software testing framework, which means pytest is a command-
line tool that automatically finds tests you’ve written, runs the tests, and
reports the results. It has a library of goodies that you can use in your tests
to help you test more effectively. It can be extended by writing plugins or
installing third-party plugins. And it integrates easily with other tools like
continuous integration and web automation.

Here are a few of the reasons pytest stands out above many other testing
frameworks:

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2


• Simple tests are simple to write in pytest.

• Complex tests are still simple to write.

• Tests are easy to read.

• Tests are easy to read. (So important it’s listed twice.)

• You can get started in seconds.

• You use assert in tests for verifications, not things like self.assertEqual() or
self.assertLessThan(). Just assert.

• You can use pytest to run tests written for unittest or nose.

pytest is being actively developed and maintained by a passionate and growing
community. It’s so extensible and flexible that it will easily fit into your work
flow. And because it’s installed separately from your Python version, you can
use the same version of pytest on multiple versions of Python.

Learn pytest While Testing a Sample Application
In this book, you’re going to learn pytest by writing tests against an example
project that I hope has many of the same traits of applications you’ll be testing
after you read this book.

The sample application is called Cards. Cards is a minimal task-tracking
application with a command-line user interface. It has enough in common
with many other types of applications that I hope you can easily see how the
testing concepts you learn while developing tests against Cards are applicable
to your projects now and in the future.

Cards has a command-line interface (CLI). The CLI interacts with the rest of
the code through an application programming interface (API). The API is the
interface where you’ll direct most of your testing. The API interacts with a
database control layer, which interacts with a document database, TinyDB.

This isn’t the most sophisticated task-management application, but it’s
complicated enough to use it to explore testing.

How This Book Is Organized
The book is organized into three parts. In Part I, Primary Power, on page ?,
you’ll install pytest and start to explore its primary features using the Cards
project along the way. You’ll learn how to run simple test functions on the
command line. You’ll then use pytest fixtures to push setup and teardown
code out of the test functions. You’ll learn how to use many of pytest’s builtin

Preface • vi

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2


fixtures to help with common testing problems like temporary directories.
You’ll also learn how to turn one test into many test cases with parametriza-
tion. And finally, you’ll learn how to use markers to run a subset of tests.

In Part II, Working with Projects, on page ?, you’ll look at some real-world
issues around testing projects, as well as explore more of the power of pytest.
You’ll start by exploring a simple testing strategy process and applying it to
the Cards project. You’ll take a look at configuration files and all of the other
non-test files involved in testing projects. You’ll use coverage analysis to look
at where our testing holes are with respect to Cards, and use mocking to help
test the user interface and fill in some coverage gaps. Really all testing involves
some debugging of both code and tests, so you’ll take a look at some of the
great features pytest has to help us debug test failures. Many projects utilize
continuous integration (CI). Tox is a popular framework to simulate a local
CI system. You’ll look at using pytest with tox and with hosted CI systems.
Part II also includes a look at the Python search path. The Cards project is
an installable Python package; however, not all testing projects involve
installed packages. This chapter in Part II looks at how you can tell pytest to
find your source code.

In Part III, Booster Rockets, on page ?, you’ll take your tests to the next
level. You’ll learn how to use third-party plugins to extend the capabilities of
pytest and learn how to build your own plugins. You’ll also learn advanced
parametrization techniques that build on what you learned in Part I.

What You Need to Know
Python

This book assumes that you are fairly comfortable with Python. You don’t
need to know a lot of Python—the examples don’t do anything super weird
or fancy—but Python isn’t explained in detail.

pip
You should use pip to install pytest and pytest plugins. If you want a
refresher on pip, check out Appendix 2, pip, on page ?.

A command line
I wrote this book and captured the example output using zsh on a Mac
laptop. However, the only commands I use in zsh are cd to go to a specific
directory, and pytest, of course. Because cd exists in Windows cmd.exe and
all Unix shells that I know of, all examples should be runnable on what-
ever terminal-like application you choose to use.

• Click  HERE  to purchase this book now.  discuss

What You Need to Know • vii

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2


That’s it, really. You don’t need to be a programming expert to start writing
automated software tests with pytest.

Why a Second Edition?
Both Python and pytest have changed since the first edition of this book was
published in 2017. There have been updates to pytest that are now reflected
in the book:

• New builtin fixtures
• New flags
• The addition of package scope fixtures

There have also been updates to Python that are reflected in the book:

• The adoption of f-strings and pathlib
• The addition of dataclasses

Also, since publication of the first edition, I have taught many, many people
about pytest, and I think I’ve learned how to be a better teacher. The second
edition not only expands on what is covered in the first edition—it grew from
7 to 16 chapters!—but also it presents the material in what I think is a more
gradual, digestible manner.

So what’s in all of these new chapters?

• More on parametrization, markers, coverage, mocking, tox and continuous
integration, and third-party plugins. All of these topics were covered in the
first edition, but in this edition I expand that coverage. I pulled the dis-
cussion of parametrization into its own chapter and added a discussion
of advanced parametrization techniques. I delve more deeply into markers
and include an example of how to pass data from markers to fixtures
(which is super cool). I also take you on a deeper dive into test coverage,
mocking, and CI, and using and building your own plugins to extend
pytest’s capabilities.

• A discussion of test strategy. Feedback from the first edition was that the
book was great for the mechanics of how to use pytest, but the “What test
do I write?” information was a bit lacking. The new Chapter 7, Strategy,
on page ? is a push in the right direction of what tests to write. A com-
plete treatment of test strategy would be a book in itself; however, this
chapter will get you started.

• Information about the Python search path. A lot of readers reached out to
me asking about how to get their tests to see their test code, and the first

Preface • viii

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2


edition didn’t cover it. The project in this book, Cards, doesn’t have that
problem because it’s an installed Python package. However, lots of user
projects are applications or scripts or lots of other things that are not
installed packages. This chapter offers a focused look at the problem and
provides some solutions.

I consolidated the information about debugging test failures into a chapter
of its own. In the last edition, this information was spread all throughout the
book. It is my hope that when you are faced with a deadline and a failing test
suite, bringing this information together into one chapter will help you figure
out an answer quickly and ease some stress.

Finally, the example project changed. The first edition used a project called
Tasks to illustrate how to use pytest. Now it’s called Cards. Here’s why:

• It’s easier to say out loud. (Try it. Say “tasks” three times, then “cards”
three times. Right?)

• The new project itself is different because it uses Typer instead of Click
for command-line functionality. Typer code is easier to read.

• The project also uses Rich for formatting the output. Rich didn’t exist
(neither did Typer) when the first edition was written.

The code examples have also been simplified. The directory structure of the
first edition code examples followed a progression of a possible test directory
within a project, with most of the project removed. Seriously, I think it made
sense to me at the time. In this edition, there is a project in its own directory,
cards_proj, with no tests. Then, each of the chapters have test code (if appropri-
ate) that either work on the one project or on some local code. Trust me, I
think you’ll agree that it’s way easier to follow along now.

Example Code and Online Resources
The examples in this book were written and tested using Python 3.7+
(including 3.10) and pytest 6.2 and 7.0. If you’re reading this with later ver-
sions of pytest and wondering if this book still applies, the odds are that it
does. There are places where this book depends on pytest 7 features. However,
because pytest 7 is very new, I’ve noted differences with pytest 6.2 when
necessary. I have worked with many core pytest contributors to make sure
the content of this book will apply to future versions of pytest as well. There
is also an errata page set up at both pythontest.com1 and at pragprog.com2

1. https://pythontest.com/pytest-book
2. https://pragprog.com/titles/bopytest2

• Click  HERE  to purchase this book now.  discuss

Example Code and Online Resources • ix

https://pythontest.com/pytest-book
https://pragprog.com/titles/bopytest2
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2


that notes any updates you need to be aware of for future versions of pytest
and this book.

The source code for the Cards project, as well as for all of the tests shown in
this book, is available through a link on the book’s web page.3 You don’t need
to download the source code to understand the test code; the test code is
presented in usable form in the examples. But to follow along with the Cards
project, or to adapt the testing examples to test your own project (more power
to you!), you must go to the book’s web page to download the project.

To learn more about software testing in Python, you can also check out
pythontest.com4 and testandcode.com,5 a blog and podcast I run that discuss
the topic.

I’ve been programming for decades, and nothing has made me love writing
test code as much as pytest. I hope you learn a lot from this book, and I hope
you’ll end up loving test code as much as I do.

3. https://pragprog.com/titles/bopytest2/source_code
4. https://pythontest.com
5. https://testandcode.com

Preface • x

• Click  HERE  to purchase this book now.  discuss

https://pragprog.com/titles/bopytest2/source_code
https://pythontest.com
https://testandcode.com
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

