Extracted from:

Serverless Single Page Apps

Fast, Scalable, and Available

This PDF file contains pages extracted from Serverless Single Page Apps, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic

ogrammmers

Serverless
Single Page Apps

Fast, Scalable,
and Available

T putton

Faverites

Ben Rady

edited by Jacquelyn Carter

Serverless Single Page Apps

Fast, Scalable, and Available

Ben Rady

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)

Potomac Indexing, LLC (index)

Nicole Abramowitz, Liz Welch (copyedit)
Gilson Graphics (layout)

Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-149-0

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Designing a Testable Router

Although there are some exceptions, it's generally not possible to run AWS
services on your local workstation. With all of our application’s back end
running in AWS, you might be worried that it will be difficult to test. If we
want to create a fast feedback loop that tells us if things are working, we're
going to need to diverge from the traditional approach of running a complete
service stack in a development environment in order to test the application
while we build it. Instead, we're going to test our router using unit tests
written with a test first approach. Designing the router by writing the tests
first will ensure the resulting design is easy to test. Although our focus on
testing will be limited to this chapter, you'll be able to apply these same
techniques throughout the rest of the book.

The design of the router has a profound impact on the overall testability of
the application, which is why we're starting there. We want to create a suite
of automated tests that can quickly check if our app is working, without being
dependent on back-end services to run the tests. To build the router, we're
going to drive out its behavior incrementally with tests. We'll write these tests
one at a time, in parallel with the application, to ensure that all of the code
is testable. We'll eschew testing entire workflows and focus instead on testing
small bits of behavior to create tests that run in a few milliseconds. We’'ll be
able to avoid race conditions and other timing problems in the tests because
they won’t need to make asynchronous requests to a server.

One way to create a testable application is to build “seams” into the design—
in other words, clear boundaries where tests can easily invoke behavior,
inspect output, and simulate interaction. One seam in our application is the
markup. If we make the markup available to the tests, they can inspect it.
Encapsulating the JavaScript creates another seam. Making the JavaScript
accessible to the tests means they can invoke it to verify behavior. The
browser itself can act as a seam, allowing our tests to simulate user actions
by triggering events. You can see some of these testing seams in this diagram.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

*8

Trigger Inspect
EvenEs_ _________ » <html>
/, [index.html]
7’
,,’ Invoke
K *\ Functions .
: " Read Modify
h ~
. . Values Markup

h Invoke Callbacks Tt u
Event - JavaScript
' LOOp ' Make Requests [app.js]

Creating an application that is easily tested naturally promotes decoupling,’
which improves the design. As we build the router, we’ll also use these tests
to improve the design of the code through refactoring. We’ll work incrementally
to ensure that we only add what we absolutely need, which will keep the code
as simple as it can be. The result should be a reliable suite of tests that
support a simple, functional, and easily testable application.

Running Jasmine Tests

To write the tests, we're going to use the Jasmine testing framework. Jasmine
is similar to RSpec and most xUnit frameworks, so if you've used any of those
before, you should be comfortable. If not, you can follow along, or you can
check out the Jasmine documentation first.> It’s pretty simple once you get
the pattern.

The prepared workspace includes a test runner. If you have the application
loaded, add /tests/index.html to the URL, and you should see the test output.
For now, it should say we have no tests. Also, just like the rest of the applica-
tion, using the LivePage plugin or a LiveReload server means this page will
reload automatically as you make changes to the app or tests.

1. https://en.wikipedia.org/wiki/Coupling_(computer_programming)

EEYY Oy AT AP AN O IR PR Rt ML IO rr et S POr I Pt 24

2. http://jasmine.github.io

« Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://jasmine.github.io
http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

Designing a Testable Router ¢ 9

When someone reports a bug, and you can’t reproduce it anywhere, how do you fix
it? People often interpret “Works on my machine” as an accusation that the bug being
reported isn’t real—that somehow, the user is creating the problem instead of the
software. When I say that to someone, it’s actually a call for help. Not being able to
reproduce a problem leaves me stymied. After all, if I can’t reproduce it, how will I
know when it’s fixed?

When you find yourself in this situation, you can use the test suite as a sanity check
to ensure your assumptions about the app still hold true, even in environments you
can’t access directly. The deploy script in the prepared workspace not only deploys
the application to production, but deploys the tests as well. This means you can run
the tests from any device where you can run the app.

So if you have a user who’s reporting a problem, a quick way to troubleshoot what’s
going on can be to ask the user to browse to /tests and make sure they all pass. If they
don’t, the user can copy and paste the output and send it to you. You can then try
to reproduce the failing test as a proxy for reproducing the error that the user is
reporting.

Jasmine organizes tests by enclosing them in callbacks passed to two func-
tions: describe and it. The it function is used to write individual tests, while the
describe function allows us to add context and setup around the tests. We're
going to add one outer describe to hold all the tests for the app, and then add
an it for the test we want to write.

Writing the First Test

Before we can write a test, we need to figure out what behavior we want.
Expressing this behavior in plain English—and naming the test according-
ly—will make it clear what’'s going on when we come back to it later. Test
names should focus on why the code does what it does, rather than how it
does it.

The reason we need a router is to support multiple views in the application.
Right now, the landing page is our only view. To drive out the router behavior,
we’ll write a test that asserts that there’s another view that can be created.
This will not only help us create the functionality we want, but it will clearly
explain why it’'s needed.

The second view we're going to create will show the programming problems
in the app, so we're going to call it the problem view. This will be the primary
view that users interact with in the app. We're not really sure what we want
it to look like yet, but we can at least add enough behavior to the app to get
it to transition from the landing page to this new view. Being able to do this

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

°10

is a small step that will help us make progress...even if the new view doesn’t
have any real content.

Jasmine will combine the text in the describe and it functions to create the full
name of the test. We want to ensure those names are readable. The name of
Jasmine’s it function also gives us a hint about how to name the test. You
should be able to read it, like “It can show a problem view.” In the prepared
workspace, open public/tests/app_spec.js and add the new test there.

learnjs/2000/public/tests/app_spec.js

describe('LearnJS', function() {
it('can show a problem view', function() {
1)

1)

Now that we have a name for our test, we can write the test itself. The action
were going to take in this test is to invoke a JavaScript function that we’ll
call the router function. The router function’s job is to find and display the
appropriate view, given the current route as defined by the URL’s hash. We're
going to call this function showView and put it in a namespace® called leamjs.
This function will be responsible for creating the view markup and adding
that markup to our app. It will take the URL hash as a parameter, which it
will use to select the view. For this test, we’ll pass in a hash value that repre-
sents the route for the first problem in our app: #problem-1.

The showView function doesn't exist yet, but that’s OK. We're using the test to
drive out the design of the function. The figure on page 11 shows our first
pass at building a router. Note that theresnothlnglnourapp that will call
our router function. Eventually, another part of our app will invoke showView()
when the browser fires a hashchange event. It will pass in the current hash
value provided by the document location API,* using window.location.hash. When

showView is invoked, we’ll create the view and append it to the page.

The assertion we're going to make in our test is that the router has placed
the problem view markup in a view container. The view container is another
essential part of our router. It's the element the router will use to hold the
view’s markup. Any markup inside the view container will be replaced when
the router adds a new view.

To write the assertion, we're going to use jQuery to select’ elements from our
page. We'll assert that our app contains an element with the view-container class,

3. http: //eloquentjavascnpt net/10_modules.html#h NitCO6r9Hn

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/brapps/code/learnjs/2000/public/tests/app_spec.js
http://eloquentjavascript.net/10_modules.html#h_NitCO6r9Hn
https://developer.mozilla.org/en-US/docs/Web/API/Window/location
https://learn.jquery.com/using-jquery-core/selecting-elements/
http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

Designing a Testable Router ® 11

<html>

[index.html]

<div>
view-container

Router Fn
' Browser I #1 Hash Change Event [app.js]

>
>

Events ' showView () #3 Replace Content

#2 Create View

and inside that element is another element with the problem-view class. We do
this by selecting these elements with jQuery, then asserting that the number
of elements we selected is equal to one.

learnjs/2100/public/tests/app_spec.js

describe('LearnJS', function() {
it('can show a problem view', function() {
learnjs.showView('#problem-1');
expect($('.view-container .problem-view').length).toEqual(l);
1)
1)

If your LivePage/LiveReload is working properly, when you save the spec file
the test runner should reload and run the tests, showing you the test fails:
1 spec, 1 failure

Learn]S can show a problem view
ReferenceError: learnjs is not defined

This test fails as we expect. We haven’'t added any behavior to our app, nor
have we created the namespace where our application is going to live. The
first step in getting this test to pass will be to do that.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/brapps/code/learnjs/2100/public/tests/app_spec.js
http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

