
Extracted from:

Serverless Single Page Apps
Fast, Scalable, and Available

This PDF file contains pages extracted from Serverless Single Page Apps, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Serverless Single Page Apps
Fast, Scalable, and Available

Ben Rady

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz, Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-149-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Invoking Lambda Functions
You can invoke a Lambda function from a browser in two ways. The first way
is to use the AWS SDK. The second is via the Amazon API Gateway. First,
we’re going to see how to invoke Lambda functions from the browser, using
the AWS SDK and the Cognito credentials issued to the user.

By adding a new policy to our authenticated Cognito role, we can invoke
Lambda functions directly from the browser without going through a public
HTTP interface. As long as users have the proper credentials that let them
assume the role, they can perform any operation listed in the policy. The
particular operation we want to perform is named invoke. To perform this
operation, you need to create an instance of the Lambda class from the AWS
library. You then need to call the invoke function.

Create a Lambda Policy

To allow access to this Lambda function, you need to create a new IAM policy and
add it to the authorized Cognito role, just as we did in Authorizing DynamoDB Access,
on page ?. Unlike that policy, you won’t need a Condition clause in this one, because
you’re granting access to all authenticated users.

Of course, when using the Lambda API, we have the same issues with expiring
credentials that we do with DynamoDB. Wouldn’t it be great if we could reuse
the sendDbRequest function to handle all that? Actually, we can…but you’ll
probably want to rename it to something like sendAwsRequest first. If the tests
still pass once you’ve done that, you can go ahead and write a function to
call the service.

learnjs/6200/public/app.js

learnjs.popularAnswers = function(problemId) {
return learnjs.identity.then(function() {

var lambda = new AWS.Lambda();
var params = {
FunctionName: 'learnjs_popularAnswers',
Payload: JSON.stringify({problemNumber: problemId})

};
return learnjs.sendAwsRequest(lambda.invoke(params), function() {
return learnjs.popularAnswers(problemId);

});
});

}

The tests for this new function follow the same patterns as the tests for our
DynamoDB functions, so they’re easy to write. Just as in the previous chapter,

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/brapps/code/learnjs/6200/public/app.js
http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

we’re using jQuery Deferred objects to coordinate these requests. Adding this
information into the views in our application takes much the same form.

One limitation of this approach is that only authenticated users will be able
to make these requests. While it’s possible to relax the permissions on this
function and allow anyone to invoke it, there’s another way to provide open
access to this Lambda function so that anyone who wants to can invoke it.
Next, we’ll look at how to provide access to a Lambda function via Amazon’s
HTTP API Gateway.

Using the Amazon API Gateway
As we’ve seen, invoking Lambda functions via the AWS SDK with Cognito
credentials can be a great way to integrate custom services into your applica-
tions, but what if you want to provide public access to a Lambda function?
You can make these functions accessible via an unauthenticated HTTP request
using the Amazon API Gateway.

HTTP or HTTP?

While describing the API Gateway as “a way to invoke Lambda functions via HTTP”
is correct, one thing to understand is that the AWS SDK for JavaScript also invokes
Lambda functions via HTTP. Indeed, almost everything it does to interact with AWS
is via HTTP, because that’s the most stable protocol available from a web browser.
It’s just using a different endpoint than what’s provided via the API Gateway.

The Amazon API Gateway maps APIs to Lambda functions through endpoints
that you define with each function. You can create these APIs and their
associated endpoints either through the Amazon API Gateway console or
through the Lambda console. To create a public API for our function, we’re
going to use the Lambda console.

First, go to the settings page for our function in the Lambda console. Select
the “API endpoints” tab, and click the “Add API endpoint” link. Once you do
that, you’ll be prompted to choose an endpoint type. Choose API Gateway,
and you’ll be presented with a configuration screen that looks like this:

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Switch the security to Open, and don’t mind the scary warning that shows
up when you do. The whole point here is that we’re trying to make this public.
Next, switch the method to POST, because we want to use HTTP posts to
deliver the request body. Set the deployment stage to either prod or test,
depending on which version you’re creating, and then pick an API name.

The API name is used to identify this API in the Gateway console. If you create
lots of different applications using the same AWS account, you can use these
names to differentiate APIs for different apps.

After saving these changes, you may have to wait a few seconds for them to
be applied. Then you can try to make a request from the command line to
ensure the API is active and publicly accessible. Get the endpoint URL from
the Lambda console, and then using the curl command, make a POST request
from the command line, like this:

$ curl -d '{"problemNumber":1}' «endpoint_url»
{"true":2,"!false":1}

If you get back a response like this, you know the service is working. You
may get an empty JSON object if you haven’t saved any answers. If you get
a message that says “Missing Authentication Token,” double-check your URL.

With that, we now have two methods for accessing this service: one authenti-
cated method that uses the AWS JavaScript SDK and Cognito credentials,
and a public HTTP API that anyone can access. Depending on the type of

• Click HERE to purchase this book now. discuss

Using the Amazon API Gateway • 9

http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

application that you’re building, you may want to use one or both of these
approaches.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/brapps
http://forums.pragprog.com/forums/brapps

