
Extracted from:

RubyMotion
iOS Development with Ruby

This PDF file contains pages extracted from RubyMotion, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

RubyMotion
iOS Development with Ruby

Clay Allsopp

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Kim Wimpsett (copyeditor)
David J. Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-28-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—July 2014

http://pragprog.com
rights@pragprog.com

CHAPTER 4

Representing Data with Models
We’ve covered views and controllers, but where’s the love for the M in MVC?
Well, wait no more, because we’re going to dive into models. We now under-
stand views and controllers, but in practice models will play just as big of a
role as the sexier, user-facing code.

In iOS, there are two big components to models: CoreData and, well, everything
else. CoreData is an iOS object graph and persistence framework, sort of
similar to ActiveRecord in Rails-land. It’s an incredibly powerful framework
to save and query objects using a database, so it deserves a chapter or even
a book onto its own. But even without touching CoreData, we can do a whole
lot with just “everything else” about models. It’s time to get down to business.

Writing Basic Models
Unlike controllers and views, there’s no default superclass that models
inherit from; they’re just plain-old Ruby objects. We can use the standard
attr_accessor, reader, and writer functions to declare getter and setter methods,
which sometimes are all you need.

Many apps have users and profiles, so let’s work through a portion of that
sort of app and use some nice models. Let’s create a new project (such as
motion create UserProfile) and two subdirectories within ./app: models and controllers.
We’re not only going to cover models; we’re going to keep building on what
we already know.

Our app will let us create, view, and edit users. Since we’re doing an awful
lot of work with users, this sounds like a good place to begin with our first
model. To get started, we first create user.rb in ./app/models. For now, each user
will have a name, email, and ID. This is a pretty basic implementation of User:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

models/UserProfile/app/models/user.rb
class User

attr_accessor :id
attr_accessor :name
attr_accessor :email

end

That’s all we need for now. Let’s add our first controller, which we can use to
view a user. Create user_controller.rb in app/controllers, which will be a subclass of
UIViewController. We’ll use a custom initializer that takes a User and fills the UI
appropriately. Sound good? Let’s start with that initializer.

models/UserProfile/app/controllers/user_controller.rb
class UserController < UIViewController

attr_accessor :user

def initWithUser(user)
initWithNibName(nil, bundle:nil)
self.user = user
self.edgesForExtendedLayout = UIRectEdgeNone
self

end

Pretty typical initializer, isn’t it? We’re going to assume the user passed is a
User object, but we’ll worry about that later. Next, we need to set up the view.
This will be kind of lengthy, but that’s nothing new for us at this point.

For each of our User properties, we’ll create two labels: one to tell us what
value we’re looking at (“Email”) and one right beside it that presents the value
of that property for our user (“clay@mail.com”). Since we are using Ruby’s
nifty send(), we can do this in one loop.

models/UserProfile/app/controllers/user_controller.rb
def viewDidLoad

super

self.view.backgroundColor = UIColor.whiteColor

last_label = nil
["id", "name", "email"].each do |prop|
label = UILabel.alloc.initWithFrame(CGRectZero)
label.text = "#{prop.capitalize}:"

label.sizeToFit
if last_label

label.frame = [
[last_label.frame.origin.x,
last_label.frame.origin.y + last_label.frame.size.height],

label.frame.size]
else

Chapter 4. Representing Data with Models • 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/models/UserProfile/app/models/user.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile/app/controllers/user_controller.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile/app/controllers/user_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

label.frame = [[10, 10], label.frame.size]
end
last_label = label

self.view.addSubview(label)

value = UILabel.alloc.initWithFrame(CGRectZero)
value.text = self.user.send(prop)
value.sizeToFit
value.frame = [

[label.frame.origin.x + label.frame.size.width + 10, label.frame.origin.y],
value.frame.size]

self.view.addSubview(value)
end
self.title = self.user.name

end
end

Don’t get overwhelmed! We just created two UILabels for each property and laid
them out nicely.

Before we run our app, we need to set up our AppDelegate to get the controller
on the screen. First, we create a new User in app_delegate.rb and use it to initialize
a UserController. We’re going to wrap it in a UINavigationController so we get the nice
effect with self.title.

models/UserProfile/app/app_delegate.rb
class AppDelegate

def application(application, didFinishLaunchingWithOptions:launchOptions)
@window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)

@user = User.new
@user.id = "123"
@user.name = "Clay"
@user.email = "clay@mail.com"
@user_controller = UserController.alloc.initWithUser(@user)
@nav_controller =

UINavigationController.alloc.initWithRootViewController(@user_controller)
@window.rootViewController = @nav_controller
@window.makeKeyAndVisible
true

end
end

Let’s give it a rake and see what happens! Your app should look something
like Figure 7, A controller for our User model, on page 8. Our view isn’t the
prettiest, but a good designer could dress up even this limited information
into something shippable.

• Click HERE to purchase this book now. discuss

Writing Basic Models • 7

http://media.pragprog.com/titles/carubym/code/models/UserProfile/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Figure 7—A controller for our User model

This is great, but this User class didn’t help out all that much. We’re going to
give it some abilities that will make our code much more flexible while showing
off what smart models can do.

Preparing Scalable Models
The word scalable gets thrown around a lot, usually in terms of databases or
web back ends, but client-side code can easily become unscalable as well.
For instance, if we wanted to add more attributes to our User, we’d have to
make changes in three places: our class definition, our controller, and where
we instantiate our objects. In a world where engineers move fast, having all
this overhead can be a big time sink.

I wouldn’t bring this up if there weren’t a better way. We’re going to use a
nice Ruby trick that lets our models become more flexible and readies them
for a typical API. In user.rb, change our three attr_acessor() lines into this:

models/UserProfile_flex/app/models/user.rb
class User

PROPERTIES = [:id, :name, :email]
attr_accessor *PROPERTIES

Nifty, right? Now we have one data structure containing our desired properties,
instead of multiple independent lines. This lets us refactor code that should
apply to all properties into more loops like PROPERTIES.each. For example, we
can now make our User initializable with a hash.

models/UserProfile_flex/app/models/user.rb
def initialize(properties = {})

properties.each do |key, value|
if PROPERTIES.member? key.to_sym
self.send("#{key}=", value)

end
end

end

Chapter 4. Representing Data with Models • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/models/UserProfile_flex/app/models/user.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_flex/app/models/user.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

This lets us initialize users in one line instead of needing one line for every
property. Plus, when we add new properties, the initializer code still works.
Let’s start updating our old code to use this concept. In UserController, change
our properties from being hard-coded to using User::PROPERTIES.

models/UserProfile_flex/app/controllers/user_controller.rb
last_label = nil
User::PROPERTIES.each do |prop|➤

label = UILabel.alloc.initWithFrame(CGRectZero)

While we’re at it, let’s change how we created the @user instance variable in
AppDelegate.

models/UserProfile_flex/app/app_delegate.rb
@window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)

@user = User.new(id: "123", name: "Clay", email: "clay@mail.com")➤

@user_controller = UserController.alloc.initWithUser(@user)

If you run our app now, nothing looks different, but under the hood we’ve
made some important changes. Just to show how useful this is, let’s add a
new phone property to User so that we can see how we just change the input
when creating a new object.

models/UserProfile_flex2/app/models/user.rb
class User

PROPERTIES = [:id, :name, :email, :phone]➤

attr_accessor *PROPERTIES

models/UserProfile_flex2/app/app_delegate.rb
@window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)

@user = User.new(id: "123", name: "Clay",➤

email: "clay@mail.com", phone: "555-555-5555")➤

Once you run rake, you’ll see that we now have a matching UI element for our
new property without having to add new code in the controller. This is a great
example of how smart(er) models can save us time, but what if we wanted to
edit this data?

Changing Models with Key-Value Observing
Making our model code flexible is the low-hanging fruit, and keeping a view
up-to-date with a model is usually a hard problem. A model object has to be
aware of all the views accessing its data, which just leads to all sorts of
problems and code spaghetti. Imagine a world where it all just works: you

• Click HERE to purchase this book now. discuss

Changing Models with Key-Value Observing • 9

http://media.pragprog.com/titles/carubym/code/models/UserProfile_flex/app/controllers/user_controller.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_flex/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_flex2/app/models/user.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_flex2/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

change the name on a User, and the appropriate label instantly reflects those
changes...no code spaghetti or zero-ing references.

I’m talking this up so much because it is possible to implement. iOS has a
concept of key-value observing (KVO). Built into the frameworks is a system
by which one object can passively observe changes in properties of another
object. Those properties are referred to by keys, which typically correspond
to the variable name of the attribute.

In our User case, our controller would observe the "name" key of the User. In the
callback for that observation, we would reset the label’s text to reflect the new
name value.

I don’t know about you, but I’m anxious to write some code. But not so fast!
The original implementation of KVO isn’t very Ruby-like. Thankfully, there is
a popular RubyGem called BubbleWrap (http://bubblewrap.io) that “wraps” many
Objective-C APIs into idiomatic Ruby structures. To install it, run gem install
bubble-wrap in your shell and add require "bubble-wrap" to your Rakefile.

models/UserProfile_kvo/Rakefile
$:.unshift("/Library/RubyMotion/lib")
require 'motion/project/template/ios'
require 'bubble-wrap'➤

begin
require 'bundler'
Bundler.require

rescue LoadError
end

Note here that the order of these statements does matter: BubbleWrap’s require
should come before the block involving Bundler.

BubbleWrap is an extensive library with many different features, so definitely
browse its documentation sometime. For now, we’re just going to use the
wrappers it creates for key-value observing on our model. We’ll be working
with UserController, so let’s open that and include BubbleWrap’s KVO module.

models/UserProfile_kvo/app/controllers/user_controller.rb
class UserController < UIViewController

include BubbleWrap::KVO➤

attr_accessor :user

This is a nice and easy first step. This gives us access to the observe(object, key)
method, which we’ll use right now. In the loop over User::PROPERTIES, we’re going
to observe each property and update the value label accordingly. After we ini-
tialize the label, add the observe() method.

Chapter 4. Representing Data with Models • 10

• Click HERE to purchase this book now. discuss

http://bubblewrap.io
http://media.pragprog.com/titles/carubym/code/models/UserProfile_kvo/Rakefile
http://media.pragprog.com/titles/carubym/code/models/UserProfile_kvo/app/controllers/user_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Third-Party Libraries and RubyMotion

RubyMotion does not currently support require in our source code files, so we need to
use the RubyGems package manager (http://rubygems.org/) to bundle external libraries.
RubyGems comes pre-installed on most versions of OS X, but you should visit the
RubyGems website to download the latest version if necessary.

Installing RubyMotion-specific gems isn’t any different from normal desktop gems:
in your terminal, run gem install [gem name]. It will be downloaded like any other gem
and can be required in your project’s Rakefile; however, there will usually be an
exception if you try to use it in non-RubyMotion apps. Since these are normal
RubyGems, you can use Bundler (http://bundler.io/) to manage your gems like any other
Ruby project.

models/UserProfile_kvo/app/controllers/user_controller.rb
value = UILabel.alloc.initWithFrame(CGRectZero)
value.text = self.user.send(prop)
observe(self.user, prop) do |old_value, new_value|➤

value.text = new_value➤

value.sizeToFit➤

end➤

value.sizeToFit

We pass it the object we want to observe (self.user) and the key we want updates
about (prop). The callback block returns both the old and new values for the
property, which could be useful if we were making more discriminatory UI
updates.

Since the controller’s title is originally set to the user’s name, it’s a nice idea to
update that as the name changes.

models/UserProfile_kvo/app/controllers/user_controller.rb
self.title = self.user.name

observe(self.user, "name") do |old_value, new_value|➤

self.title = new_value➤

end➤

Finally, we need to do a quick cleanup by overriding viewDidUnload(), one of the
controller life-cycle methods. Since we’re creating these observations in view-
DidLoad(), we need to mirror their un-observing in the counterpart method.

models/UserProfile_kvo/app/controllers/user_controller.rb
def viewDidUnload

unobserve_all
super

end

• Click HERE to purchase this book now. discuss

Changing Models with Key-Value Observing • 11

http://rubygems.org/
http://bundler.io/
http://media.pragprog.com/titles/carubym/code/models/UserProfile_kvo/app/controllers/user_controller.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_kvo/app/controllers/user_controller.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_kvo/app/controllers/user_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Whew, all done. Let’s play with our app and actually see the fruits of our
labor. Go ahead and rake and get ready to use the debugger!

In the interactive debugger, grab the @user instance variable of our AppDelegate.
BubbleWrap includes a nifty shortcut for grabbing the app’s delegate, which
we can now use.

(main)> user = App.delegate.instance_variable_get("@user")
=> #<NSKVONotifying_User @id="123", @email="clay@mail.com", @phone="555-555-5555">

Kind of a weird class name, isn’t it? I won’t get too technical, but under the
hood KVO does a lot of tricks involving dynamically subclassing your observed
objects. But it is proof that our user is being observed! So, let’s make some
changes:

(main)> user.email = "my_new_email@host.com"
=> "my_new_email@host.com"
(main)> user.name = "Charlie"
=> "Charlie"

In Creating a New App, we learned to make changes to the UI using the
debugger, but now we’re not even playing with the view objects! Everything
just works. This is an incredibly powerful asset in your toolbox when it comes
to making more complex, reactive apps.

So, now that we can make all these changes and synchronize the UI, how
can we save them? If we quit the app right now and restart, our old “Clay”
user will still be hanging around. And I personally have no problem with that,
but most apps will want to save the user’s changes.

Saving Data with NSUserDefaults and NSCoding
Applications generally have long-lasting consequences: we take a picture,
create a presentation, or just unlock a new level. iOS will try to keep your
app in memory for a reasonable amount of time, but eventually you need to
permanently save something to the disk. There are several ways of doing this,
ranging from writing files to using a SQLite database. We’re going to use
something in the middle: NSUserDefaults.

NSUserDefaults lets us persist basic objects (strings, numbers, arrays, and
hashes) through a simple key-value interface. It handles the serialization
mechanics for us, saving you the trouble of constructing a custom file serial-
ization scheme. But it has one more trick up its sleeve: coupled with NSCoding,
we can actually save arbitrary objects, not just the primitives classes.

Chapter 4. Representing Data with Models • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

An NSCoding-compliant object implements two specific methods that describe
how to save and restore its properties into primitive objects. We can then take
this collection of primitive objects and turn it into raw data, which NSUserDefaults
understands. That all sounds a bit heady, so let’s try implementing this fancy
stuff in our app to get a better idea of what it can do.

First let’s make our User NSCoding compliant. We need to add two new methods:
initWithCoder(decoder) and encodeWithCoder(encoder). When we need to serialize and
deserialize our object, these methods will be called. The objects they pass as
arguments have simple APIs for retrieving and setting values. For our User, they
look something like this:

models/UserProfile_persist/app/models/user.rb
def initWithCoder(decoder)

self.init
PROPERTIES.each do |prop|

saved_value = decoder.decodeObjectForKey(prop.to_s)
self.send("#{prop}=", saved_value)

end
self

end
def encodeWithCoder(encoder)

PROPERTIES.each do |prop|
encoder.encodeObject(self.send(prop), forKey: prop.to_s)

end
end

initWithCoder(decoder) is called when we want to deserialize our object out of the
decoder instance. Thus, we use decodeObjectForKey(key) on all of our PROPERTIES (see
how that keeps making our life easier!).

Conversely, encodeWithCoder(encoder) gets called when we want to save our object
and encode its properties with encodeObject:forKey:. The values and keys we use
here are exactly those we use in initWithCoder:.

Our User can be encoded and decoded, but now what? We want to save and
load the AppDelegate’s @user, which requires us to use the NSUserDefaults. If we’re
using primitive types like strings or arrays, saving them directly just works:

defaults = NSUserDefaults.standardUserDefaults
defaults["some_array"] = [1,2,3]
defaults["some_number"] = 4

some_name = defaults["some_name"]

However, putting NSCoding objects such as @user into NSUserDefaults requires
NSKeyedArchiver and NSKeyedUnarchiver. These two classes take NSCoding objects
and transform them into instances of NSData, which can be safely stored or

• Click HERE to purchase this book now. discuss

Saving Data with NSUserDefaults and NSCoding • 13

http://media.pragprog.com/titles/carubym/code/models/UserProfile_persist/app/models/user.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

retrieved from the defaults like normal. NSKeyedArchiver uses the encodeWithCoder:
we implemented earlier, while NSKeyedUnarchiver uses initWithCoder:. That’s a lot
of NS prefixes, I know. Here’s what an NSCoding serialization looks like:

my_object = # some NSCoding-compliant object
defaults = NSUserDefaults.standardUserDefaults
defaults["some_object"] = NSKeyedArchiver.archivedDataWithRootObject(my_object)

my_saved_data = defaults["some_object"]
my_saved_object = NSKeyedUnarchiver.unarchiveObjectWithData(my_saved_data)

That’s going to get really tedious really fast to repeat everywhere for all our
Users, so let’s wrap it in some helper methods.

models/UserProfile_persist/app/models/user.rb
USER_KEY = "user"
def save

defaults = NSUserDefaults.standardUserDefaults
defaults[USER_KEY] = NSKeyedArchiver.archivedDataWithRootObject(self)

end
def self.load

defaults = NSUserDefaults.standardUserDefaults
data = defaults[USER_KEY]
protect against nil case
NSKeyedUnarchiver.unarchiveObjectWithData(data) if data

end

Ah, much better. In a production app, our USER_KEY would probably be a
function of the user’s id, but since we have only one user in our app, it’s not
a big deal. All we have to do now is save and load our object when the app
opens and closes.

models/UserProfile_persist/app/app_delegate.rb
@window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
@user = User.load➤

@user ||= User.new(id: "123", name: "Clay",➤

email: "clay@mail.com", phone: "555-555-5555")➤

@user_controller = UserController.alloc.initWithUser(@user)

models/UserProfile_persist/app/app_delegate.rb
def applicationDidEnterBackground(application)

@user.save
end

In addition to application:didFinishLaunchingWithOptions:, the application delegate can
respond to many more application life-cycle methods, similar to UIViewController.
Apple recommends we save user data after the application has entered the
background (as not to accidentally freeze the interface), so we use that callback
to call @user.save.

Chapter 4. Representing Data with Models • 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/models/UserProfile_persist/app/models/user.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_persist/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/models/UserProfile_persist/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Why don’t you take our app for a spin, alter some @user properties, and then
close our app? In fact, hold down the home button on the simulator and force-
quit it with the red icon just to make sure we really got it. Open it back up,
and your changes should reappear!

This small app had only one controller, but you can see how KVO and
NSUserDefaults scales to more complex objects and relationships. But what about
our user interfaces? How can we display hundreds or thousands of models
on the screen and keep our app running smoothly? Well, that’s where the
incredibly versatile UITableView comes into play in Showing Data with Table
Views.

• Click HERE to purchase this book now. discuss

Saving Data with NSUserDefaults and NSCoding • 15

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

