
Extracted from:

Xcode Treasures
Master the Tools to Design, Build,

and Distribute Great Apps

This PDF file contains pages extracted from Xcode Treasures, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Xcode Treasures
Master the Tools to Design, Build,

and Distribute Great Apps

Chris Adamson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Development Editor: Tammy Coron
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-586-3
Book version: P1.0—October 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Build Phases
Build Settings are great and all, but they don’t actually do anything in and
of themselves. The next tab over, Build Phases, is where the action takes
place. This tab describes each step of the build process in order.

Depending on what type of project you created, several phases will already
be present. For an iOS or Mac app, there are default build phases to do the
following:

• Build any dependencies first, which are other targets in the project that
need to be built before this one.

• Compile your source files into executable code.

• Link your executables with system libraries.

• Copy resource files, like storyboards, asset catalogs, other kinds of media,
and so on.

You can expand a phase with the disclosure triangle on the left. Each phase
contains a list of files that the phase applies to, along with + and - buttons
to add and remove files from the phase. So, for the Compile Sources phase,
all .swift, .c, .m (Objective-C) and other source files are automatically added to
the compile phase as you add them to the project. Same goes for resource
files in the Copy Bundle Resources phase.

Copy File Phases
In rare occasions, you might want to tweak this. Imagine, for example, if you
had a programming-tutorial app that needed to bundle .swift files for the user
to view and edit. You wouldn’t want to build these files, but instead copy them
to the app-bundle as-is. In the following figure, BundledSwiftFile.swift is meant to
be shown in a window, and not to actually be built as part of the app:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

To do this, you need to do two things. First, go to the Compile Sources build
phase and use the minus button to remove BundledSwiftFile.swift from the set of
files to compile. Next, since the file isn’t of a resource type (storyboards, asset
catalogs, images, etc.), you can’t just add it to the files in the Copy Bundle
Resources rule. Instead, click the + at the top of the Build Phases tab and
choose “New Copy Files Phase” (or use the menu item Editor -> New Build
Phase -> Add Copy Files Build Phase).

This copy-files phase is different from the default Copy Bundle Resources
phase, because it lets you specify a known destination within the app bundle,
along with an optional subpath if you want to get fancy with your file structure.
To read the file at runtime, the best place is the Resources folder, since that’s
in the search path used by the Bundle class’ url(forResource:withExtension:) and
similar resource-loading methods.

With your file copied to this expected location, reading it at runtime is easy:

building/SwiftFileInBundleDemo/SwiftFileInBundleDemo/ViewController.swift
guard let sourceURL = Bundle.main.url(

forResource: "BundledSwiftFile", withExtension: "swift"),
let sourceText = try? String(contentsOf: sourceURL) else { return }

textView.string = sourceText

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/caxcode/code/building/SwiftFileInBundleDemo/SwiftFileInBundleDemo/ViewController.swift
http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

Build Rules

To the right of the Build Phases tab, there’s one more tab that you’ll probably never
need to use, but which answers an important question: how does Xcode know what
to do with each file type? The Build Rules tab is a list of file types and actions to take
on them. You can search through the list to find the rule that manages the existing
types. You can also use the + button to define a new rule, which matches files either
by known types or by a substring you choose (like a file extension), and can then run
one of several dozen built-in actions, or run an arbitrary script.

This lets you add pretty much any kind of processing to an Xcode build. For example,
if you had a compiler for some arbitrary language that produced code in an appropriate
binary format (x86_64 for Mac, ARM for iOS devices), you could add a rule to run a
script to call that compiler, and then write app sources in that language. And that’s
great news for anyone with legacy FORTRAN code from 1965 that they want to embed
in an iPhone app, right?

Run Script Phases
Along with tweaking the files processed by the built-in rules, and having the
ability to copy files to the target, there’s one more option to really open up
what you can do with builds: the Run Script phase. This allows you to write
a shell script that can do, well, anything a shell script on your Mac can do.
For example, the SwiftLint1 code checker uses custom scripts to scan your
source code and enforce good Swift coding style.

As an example, I once hid an Easter egg in one of my apps that would show
what I was playing in iTunes at the time the build was performed. You can
get the current song title with a three-line AppleScript:

tell application "iTunes"
get the name of the current track

end tell

Next, with the command-line utility osascript, you can run AppleScripts by
either separating each line with the -e flag, or providing a source file as an
argument. So you can get the iTunes current song title written to standard
out like this (note that this listing uses the \ line-wrap operator to split the
command over several lines to fit the book’s formatting; you can write it all
as one line):

osascript -e "tell application \"iTunes\"" \➾

-e "get the name of the current track" \➾

1. https://github.com/realm/SwiftLint

• Click HERE to purchase this book now. discuss

Build Phases • 7

https://github.com/realm/SwiftLint
http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

-e "end tell"➾

Gonna Needa Pasteboard❮

So, you can probably imagine that with a series of osascript calls, you can
extract whatever you need from iTunes. Now you’d need a way to get them
into a file that could then be copied into the build. You could write out a
simple text file, but for build scripts, you can make use of a wonderful com-
mand-line utility called PListBuddy. This executable, which lives in /usr/libexec,
can read and write individual entries from plist files, which in turn can be
easily read into memory as NSArray and NSDictionary objects.

PListBuddy’s commands can by shown with its -h command. For this demo, all
you need to know is that you can say PListBuddy -c "Add key-name value-type value file-
name" to provide the value of a key in a given .plist file, which will be created
automatically if it doesn’t already exist.

With these two tools, you have everything you need to write a script to set up
the needed file inside the bundle. Start by clicking the + button and choose
“New Run Script Phase”.

There’s one other thing you need to know for this script to work: where to
write the .plist file. Fortunately, all the build settings described earlier are
available in scripts, so $TARGET_BUILD_DIR contains the path to the directory
where the app is being built. And that means you can write a file inside the
bundle by using this path and appending the app name. Then you need to
know where to put a file inside the app bundle so the Bundle class can find it
at run-time. On iOS, just put your file in the top-level directory, and on
macOS, put it in Contents/Resources.

So here’s a script to create the Easter egg file (like before, this has to use
bash’s line-wrap syntax to fit the formatting of the book):

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

tmpfile=$(mktemp /tmp/tunes.txt)
rm $TARGET_BUILD_DIR/BuildScriptEasterEggDemo.app/BuildTunes.plist > \
/dev/null 2>&1
osascript -e "tell application \"iTunes\"" \
-e "get the name of the current track" \
-e "end tell" > $tmpfile
/usr/libexec/PListBuddy -c "Add :SongTitle string $(cat $tmpfile)" \
$TARGET_BUILD_DIR/BuildScriptEasterEggDemo.app/BuildTunes.plist
osascript -e "tell application \"iTunes\"" \
-e "get the artist of the current track" -e \
"end tell" > $tmpfile
/usr/libexec/PListBuddy -c "Add :SongArtist string $(cat $tmpfile)" \
$TARGET_BUILD_DIR/BuildScriptEasterEggDemo.app/BuildTunes.plist
rm "$tmpfile"

This script starts by creating a temporary file descriptor and deletes any
BuildTunes.plist file left over from an earlier run (writing any output or errors to
/dev/null so Xcode doesn’t see them as errors and stop the build). Then it does
a call to osascript that writes the song title to the temp file, and a call to PListBuddy
to write the temp value to the BuildTunes.plist file. Next, it repeats these steps
with the song artist. Finally, it deletes the temp file.

Try a build, look in the package contents of the app file, and you’ll see the
BuildTunes.plist file. Now all you need to do is read it at runtime:

building/BuildScriptEasterEggDemo/BuildScriptEasterEggDemo/AboutViewController.swift
guard let songInfoURL = Bundle.main.url(forResource: "BuildTunes",

withExtension: "plist"),
let songNSArray = NSDictionary(contentsOf: songInfoURL),
let title = songNSArray["SongTitle"] as? String,
let artist = songNSArray["SongArtist"] as? String else {

titleLabel.text = "Didn't find"
artistLabel.text = "Didn't find"
return

}
titleLabel.text = "\"\(title)\""
artistLabel.text = "by \(artist)"

And that’s all it takes. Just like the custom-copy-phase Swift file in the previ-
ous section, the newly created .plist file is waiting for you to find and use at
runtime, as shown in the figure on page 10.

Granted, this is a silly exercise, but it should drive home the point that any-
thing you can do on the command line—which pretty much means anything
—can be part of your build process, thanks to the run script build phase. All
you need are some mad bash skills, and all those Xcode build variables men-
tioned earlier.

• Click HERE to purchase this book now. discuss

Build Phases • 9

http://media.pragprog.com/titles/caxcode/code/building/BuildScriptEasterEggDemo/BuildScriptEasterEggDemo/AboutViewController.swift
http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

