
Extracted from:

Xcode Treasures
Master the Tools to Design, Build,

and Distribute Great Apps

This PDF file contains pages extracted from Xcode Treasures, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Xcode Treasures
Master the Tools to Design, Build,

and Distribute Great Apps

Chris Adamson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Development Editor: Tammy Coron
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-586-3
Book version: P1.0—October 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Embedded Scenes
One thing storyboards tend to reinforce is that a single view controller is
responsible for one screen-full of content. After all, there is a one-to-one cor-
respondence of scenes to view controllers, and the scenes themselves are
shaped like iPhone or iPad screens, depending on what device you’ve set the
“View As” control at the bottom of Interface Builder to show.

This leads to the problem of the “Massive View Controller”. If there’s a lot
going on in one scene, the natural place for all the code to deal with that is
in the view controller. And when that view controller is responsible for handling
UI events, populating table or collection views, dealing with rotation or remote-
control media events, etc., it quickly leads to the view controller’s size and
complexity getting out of hand. Nobody sets out to write a 2,000-line UIView-
Controller, but some mornings you wake up and there it is.

This section is inspired by Dave DeLong’s talk “A Better MVC” at Swift by
Northwest 2017,1 and also his follow-up blog post.

One strategy to avoid the massive view controller is to break the 1 view con-
troller == 1 screen mindset. Storyboards give us a technique to break that
habit: container views. With this approach, we use multiple view controllers in
a scene, each one smaller and more focused than would be possible otherwise.

If you pick up the container view icon from the library and
drop it in a scene, two interesting things will happen. It will
place a view in the scene, which works like any other plain
UIView, in that it can be laid out in the scene with Auto Layout
constraints. But it also adds another whole scene to the
storyboard, which is connected to the container view with a segue.

The idea here is that the second scene is where all the content comes from;
this is where you can add subviews like labels, buttons, sliders and what
have you. More importantly, since this is a completely separate scene, it has
its own view controller. And this is the key to breaking up a massive view
controller: if parts of that parent screen can take care of themselves, you can
split out their functionality into completely separate view controllers.

There’s an example of this in the download code. Take a look at the following
storyboard and we’ll walk through how it works. The app shows a table of
PlayableItem instances, which is just a struct with a streaming video URL, a

1. https://davedelong.com/blog/2017/11/06/a-better-mvc-part-1-the-problems/

• Click HERE to purchase this book now. discuss

https://davedelong.com/blog/2017/11/06/a-better-mvc-part-1-the-problems/
http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

title string, and a description string. When the user selects one of the playable
items, the app segues a detail screen, the PlayableItemViewController.

The PlayableItemViewController scene in the middle is where things get interesting.
This has just three subviews, but all of them are container views. One goes
to a VideoPlayerViewController scene, one to a TitleViewController, and one to a Descrip-
tionViewController. These scenes are trivial; for example, the title screen manages
a single label, and the description screen just has a text view, each of which
is updated by setting a playableItem property. The video scene is a little weirder,
so we’ll get back to that one.

Because these scenes are so simple, they’ve almost no code. They’re easy to expose
to unit testing (which is covered in Chapter 8, Automated Testing, on page ?),
and if there is a problem with, say, the description, it’s easier to go straight to that
source file, rather than searching through a massive view controller’s source.

There is, however, one trick to using container views. Notice that the connec-
tions to the host scene are actually segues. These are embed segues, and they
have an important use. Since the parent scene doesn’t have a direct connection
to the child scenes, it can’t access them or their properties. This is a problem,
because you need a way for the parent to pass the selected PlayableItem to the
child scenes, which will use it to update themselves.

The solution is to use the segue. When the child scene loads and is embedded
into the parent, the parent gets a one-time call to prepare(for:sender:), with the
embed segue as its parameter. The segue’s destination is the view controller
being embedded. So the trick here is to save a reference to the view controller
that’s being embedded.

In the PlayableItemViewController, you set up properties for the three child view
controllers:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewCon¬
troller.swift
private var videoPlayerVC: VideoPlayerViewController?
private var titleVC: TitleViewController?
private var descriptionVC: DescriptionViewController?

Then, you implement prepare(for:sender:) to catch each of the embed segues and
save off its destination to the correct property. In the example, there are identi-
fier strings on each of the segues to make this step work nicely with a switch
statement (and it’s a good habit to always name your segues anyway):

storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewCon¬
troller.swift
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

guard let identifier = segue.identifier else { return }

switch identifier {
case "embedTitle":

if let titleVC =
segue.destination as? TitleViewController {
self.titleVC = titleVC
titleVC.playableItem = playableItem

}
case "embedDescription":

if let descriptionVC =
segue.destination as? DescriptionViewController {
self.descriptionVC = descriptionVC
descriptionVC.playableItem = playableItem

}
case "embedVideoPlayer":

if let videoPlayerVC =
segue.destination as? VideoPlayerViewController {
self.videoPlayerVC = videoPlayerVC
videoPlayerVC.playableItem = playableItem

}
default:

break
}

}

Now that you’ve got references to the child view controllers, any time the
parent’s playableItem is set, it can send that struct to those child view controllers:

storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewCon¬
troller.swift
var playableItem: PlayableItem? {

didSet {
videoPlayerVC?.playableItem = playableItem
titleVC?.playableItem = playableItem
descriptionVC?.playableItem = playableItem

}

• Click HERE to purchase this book now. discuss

Embedded Scenes • 7

http://media.pragprog.com/titles/caxcode/code/storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewController.swift
http://media.pragprog.com/titles/caxcode/code/storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewController.swift
http://media.pragprog.com/titles/caxcode/code/storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewController.swift
http://media.pragprog.com/titles/caxcode/code/storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewController.swift
http://media.pragprog.com/titles/caxcode/code/storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewController.swift
http://media.pragprog.com/titles/caxcode/code/storyboards-behavior/EmbeddedVCDemo/EmbeddedVCDemo/PlayerSceneVCs/PlayableItemViewController.swift
http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

}

And that’s the key! With that, the child view controllers can update themselves
from whichever fields of the playableItem are relevant to them. The running app
is shown in the following figure:

The idea of container views and embedded view controllers
also helps to explain how the “AVKit Player View Controller”
icon works. As a view controller, it can’t be dropped directly
into a scene, and dropping it on a storyboard makes it its
own scene. For beginners, this is confusing: can the player
only be its own full-screen scene? Nope, the way you want to use it is as a
child view controller. This is shown at the top right of the storyboard figure
shown earlier. The VideoPlayerViewController child scene has a child view of its
own. To do this, the example project deletes the default scene that came with
the container view icon, and replaces it with an embed segue to the AVKit
Player scene.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/caxcode
http://forums.pragprog.com/forums/caxcode

