
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Preface
Shocking all the experts who continue to predict its demise, the C Program-
ming language is stronger than ever. Taught in universities and used by
developers around the world, C’s syntax and structure are borrowed by other
major languages. Often, those languages have their foundation in C. Today,
C is used to maintain operating systems, create high-end graphics drivers,
program microcontrollers, code for embedded systems, and more.

In this book, you’ll find 25 puzzles that explore the potential and possibilities
of the C language. These puzzles range from easy tasks to the complex and
tricky. Some puzzles showcase how limited C can be—and how to get around
these limitations. The goal is to showcase various aspects of C and program-
ming in general.

C programmers, from beginners to advanced, will gain understanding from
the puzzles presented in this book. Whether you’re just starting out or have
been coding for a while, the insights and surprises offered here will entertain
and delight you. The goal is to make you a better programmer.

How to Use This Book
This book contains 25 programming puzzles. Some perform specific tasks,
while others may attempt to do something that doesn’t quite work. All of the
code is written in C and adheres to the C11 standard. No additional files or
libraries are required. The programs run in the text mode environment,
specifically, under Linux in a terminal window.

For each puzzle, your job is to guess what happens. You can predict the
output, guess what the program is trying to accomplish, or identify a potential
problem. The answer is revealed on the pages that follow each puzzle, along
with an insight into understanding the code, what it does, and how or why
it fails to do what you might think it does. The point is to learn more about
C programming, witness a few tricks, and put your new knowledge to work
in your own programs.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

Here’s a sample puzzle:

int puts(const char *s);

#define lineout(a) puts(a)
#define end return(0)

int main()
{

lineout("Hello there!");
end;

}

Can you guess the output from this code? Yes, it’s C source code, though I’ve
taken some liberties with the way things are expressed. If you can guess the
output, can you identify the liberties I’ve taken in the source code? When
presented in the text, your task is to do so before you turn the page to see
my explanation and further exploration of the puzzle.

Because I’m a nice guy, here are the answers:

• The output is the string "Hello there!" followed by a newline. This is the
output generated by the puts() function, normally declared within the stdio.h
header—but this header is missing in the source code!

• Instead of including the entire stdio.h header, I write the puts() function
prototype. This is a legal move, as you can prototype any function you’ve
created. But, here I just looked up the main page definition for puts() and
copied it into my source code. Properly prototyped, the function works
just fine. (Remember that the function’s mechanics are stored in the
library, not in the header file.)

• Two defines create the unusual statements found in the main() function.
The first defines a function lineout() equivalent to the puts() function. The a
in both represents the function’s argument. So lineout() replaces puts() in
the main() function, carrying out the same task.

• The second define assigns the return(0) statement to the word end. The
result is the main() function’s statements appear alien—very non-C-like.
Still, the preprocessor replaces both lineout() and end with the proper C
statements.

This funky construction is one of the things I adore about the C language.
While as a programmer your goal should be to write easily readable text, you
can add your own quirks to the language just to keep things interesting. But

Preface • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

on a grander scale, you can use these tricks to help simplify some complex
operations. So, while my attempts obfuscated the code, you can use the same
tools to make a program more readable. And hopefully, you’ll have fun while
doing so.

Required Tools
The code presented in this book is quick and to the point. You can copy it
directly from the text (type it in) or you can obtain the puzzles from my GitHub
account: github.com/dangookin/C_Brain_Teasers.

All programs run in the terminal window, which is where I do my coding. I
use Vim to write the source code. I build (compile and link) with clang version
14.0.0. The command line code I use to build the program is clang -Wall followed
by the source code filename. This command creates the program file named
a.out, which you can run by typing ./a.out at the command prompt.

The terminal window is available in Linux and on the Macintosh under macOS.
For Windows, you can obtain the Linux runtime environment, which provides
the same functionality. See https://learn.microsoft.com/en-us/windows/wsl/install.

To install clang in Linux, use the package manager for your distro. For example,
if the distro uses apt, the command is: sudo apt-get install clang.

If you’re into Integrated Development Environments (IDEs), I recommend
Visual Studio Code. It’s available free at https://code.visualstudio.com/.

My coding style is close to the original K&R (Kernighan and Ritchie). I use
only the traditional C comments. Remember that in C, whitespace is ignored.
Feel free to use your own coding style if you desire to transcribe the examples.

Remember that some of the programs do not run properly as presented.
Mistakes are made on purpose to drive home a point that’s explained in this
text. I understand that readers who are concerned about this approach
probably aren’t reading this Preface, yet I write this warning anyway.

Contacting the Author
I’m happy to provide feedback or offer advice related to my C programming
books. You can contact me at mailto:dgookin@wambooli.com. That’s my real email
address, and I try to respond to all my mail, especially specific questions
regarding my books. I cannot write code for you, though I can try to help with
problems you encounter related to this book.

• Click HERE to purchase this book now. discuss

Required Tools • v

http://github.com/dangookin/C_Brain_Teasers
https://learn.microsoft.com/en-us/windows/wsl/install
https://code.visualstudio.com/
mailto:dgookin@wambooli.com
http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

The support page for this book can be found on my C For Dummies website
at https://c-for-dummies.com/cbrainteasers. I run a blog on that site, where you can
learn more about C programming with weekly lessons and monthly exercises.
The site has been up for over ten years, so it covers a lot of ground. Use the
search box to locate topics of interest.

Have fun solving the puzzles!

Dan Gookin, March 2024

Preface • vi

• Click HERE to purchase this book now. discuss

https://c-for-dummies.com/cbrainteasers
http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

