
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 18

Superhero’s Secret Identity

#include <stdio.h>

#define SIZE 5

int main()
{

int values[SIZE] = {2, 3, 5, 8, 13};
int *v, x;

/* initialize the pointer */
v = values;

for(x=0; x<SIZE; x++)
{

printf("%2d = %2d\n",
values[x],
*(v+x)

);
}

return(0);
}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

The code uses both array and pointer notation to output the first five Fibonacci
numbers:

2 = 2
3 = 3
5 = 5
8 = 8

13 = 13

Discussion
Arrays and pointers are similar but not exactly interchangeable. This relation-
ship explains why many beginning C programmers use arrays as a replacement
for pointers. Doing so can get you into trouble. But the point of this chapter
is to show the easy conversion method between array and pointer notation.

Pointers are variables that hold a memory location, an address. A pointer can
be considered a base, like an array’s name. In the sample code, both values[]
and v reference the same chunk of memory. The similarity between array
notation and pointer notation to reference the integer values appears in the
printf() statement: values[x] translates to *(v+x).

In both instances, variable x refers to an offset. It’s an element number in
array notation and an address offset in pointer notation: v+x is the base of
the memory chunk (v) plus a given number of integer increments (x). This
address is wrapped in parentheses and dereferenced by the * operator.

Tips and Traps
The relationship between array notation and pointers works only in one
direction. You cannot assign a memory chunk address held in a pointer
variable to an array. For example, assuming values[] is an array and v is a
pointer:

values = v;

If you attempt such an assignment, the compiler gets all huffy and tosses an
error in your direction.

However, it’s possible to use array notation in a function where a pointer is
passed as an argument.

C Brain Teasers • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

void output(int *v)
{

printf("%d\n", v[0]);
}

If the output() function accepts an integer pointer v, you can use v[] notation
in the function to reference the memory chunk’s data. Above, pointer v refer-
ences a spot in memory containing integer values. Within the function, v[0]
represents the first integer stored at memory location v. You could also use
*(v+0) with the same result.

Further Reading
The relationship between pointers and arrays

https://www.w3schools.com/c/c_pointers_arrays.php

Comparing pointers and arrays
https://www.codingninjas.com/codestudio/library/difference-between-arrays-and-pointers

Good Q&A on pointers and arrays
https://c-faq.com/aryptr/

• Click HERE to purchase this book now. discuss

Superhero’s Secret Identity • 5

https://www.w3schools.com/c/c_pointers_arrays.php
https://www.codingninjas.com/codestudio/library/difference-between-arrays-and-pointers
https://c-faq.com/aryptr/
http://pragprog.com/titles/cbrain
http://forums.pragprog.com/forums/cbrain

