
Extracted from:

Learn Functional Programming with Elixir
New Foundations for a New World

This PDF file contains pages extracted from Learn Functional Programming with
Elixir, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Learn Functional Programming with Elixir
New Foundations for a New World

Ulisses Almeida

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series editor: Bruce A. Tate
Copy Editor: Candace Cunningham, Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-245-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Creating Higher-Order Functions for Lists
Using functions in variables, like with any other value, can be hard to
remember for newcomers. To practice, we’ll work with a subject familiar to
us: lists. They’re a useful data type and are present in almost any program
we need to build. We’ve seen how to work with them using recursive functions,
but if we stop and look again at all that code we’ve written, we’ll see that they
are a little bit repetitive and boring. We always have code that navigates
through each item, and a stop condition when the list is empty. It’s time to
change it! We’ll look at how to build higher-order functions that hide the
tedious tasks and provide an interface for what matters. Let’s start with the
navigation routine.

Navigating Through Items of a List
A common task when working with lists is to travel through all the items and
do some computation on them. The first higher-order function we’ll create
permits us to navigate a list by passing a function that will compute each item.
Our first task is to create a variable that holds a list to test. Let’s go back to
our old fantasy friend Edwin and store some of his enchanted items in a vari-
able. Open your IEx and type the code that will create the magic recipient:

iex> enchanted_items = [
%{title: "Edwin's Longsword", price: 150},
%{title: "Healing Potion", price: 60},
%{title: "Edwin's Rope", price: 30},
%{title: "Dragon's Spear", price: 100}

]

Now people are coming to the store and want to know the items’ names. Let’s
create some code that prints that information. With this routine, Edwin can
prepare more magic potions while the program states the items’ names for
the buyers. To do that, we need to navigate through each list element. In this
chapter, we’ll create several functions for lists, then create a module called
MyList in a my_list.ex file and put all the functions there. The first function will
be called each/2. Write the following code:

higher_order_functions/0/my_list.ex
defmodule MyList do

def each([], _function), do: nil
def each([head | tail], function) do

function.(head)
each(tail, function)

end
end

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/0/my_list.ex
http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

The function receives two arguments: the first is the list that we’ll navigate,
and the second is a function that will be called, passing each element of the
list. The stop-condition clause is called when the list is empty; then it does

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

nothing. The other clause is called when the list has elements; then we use
the code function.(head) to call the function received in the argument, passing
an element of the list. It runs recursively when the list has multiple elements.
Let’s try it using our IEx:

iex> c("my_list.ex")
iex> MyList.each(enchanted_items, fn item -> IO.puts item.title end)
Edwin's Longsword
Healing Potion
Edwin's Rope
Dragon's Spear

We’ve used MyList.each/2 to navigate through each element of the list. The most
interesting part is that when we use that function, we don’t need to worry
about stop conditions or recursion. All that complexity is hidden. We only
need to pass the function that must be executed through each item. It’s the
same thing to say we have passed an action that will happen during the list
navigation. We can use this function with different lists and change the result
the way we like:

items = ["dogs", "cats", "flowers"]
iex> MyList.each(items, fn item -> IO.puts String.capitalize(item) end)
Dogs
Cats
Flowers
iex> MyList.each(items, fn item -> IO.puts String.upcase(item) end)
DOGS
CATS
FLOWERS
iex> MyList.each(items, fn item -> IO.puts String.length(item) end)
4
4
7

We’ve used the same collection and completed different tasks easily. It shows
how higher-order functions are powerful for helping us reuse code and hide
complexity.

Transforming Lists
Let’s practice more. Another common task is generating new lists. We can
reduce the complexity of this generation by creating a higher-order function.
Let’s imagine that the town where Edwin sells his items has increased the
sales tax rate; now he needs to increase the price of his items by 10% in order
to make the same profit. We need to generate a new list with the new prices.
Let’s go back to our module MyList and add this new function:

• Click HERE to purchase this book now. discuss

Creating Higher-Order Functions for Lists • 7

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

higher_order_functions/my_list.ex
def map([], _function), do: []
def map([head | tail], function) do

[function.(head) | map(tail, function)]
end

The MyList.map/2 that we have created receives two arguments. The first is the
list that we’ll navigate and the second is the function that we’re going to pass
each item to and use its return to build a new list. The stop-condition clause
is when we have an empty list. The other clause uses the list syntax to make
a new list. On the new list head, we have the returning value of the given
function. That function receives the current list head. On the new list tail,
we have a recursive call of the map function. We created a function that gen-
erates a new list by applying some computation on each item. The map name
is an inheritance of mathematics terminology that means transforming a set
to another one. Let’s see it in action:

iex> c("my_list.ex")
iex> increase_price = fn i -> %{title: i.title, price: i.price * 1.1} end
iex> MyList.map(enchanted_items, increase_price)
[%{price: 165.0, title: "Edwin's Longsword"},
%{price: 66.0, title: "Healing Potion"},
%{price: 33.0, title: "Edwin's Rope"},
%{price: 110.00000000000001, title: "Dragon's Spear"}]

You can simplify increase_price by using Elixir’s built-in higher-order function
Kernel.update_in/2 to update a map. Take a look:

iex> increase_price = fn item -> update_in(item.price, &(&1 * 1.1)) end
iex> MyList.map(enchanted_items, increase_price)
[%{price: 165.0, title: "Edwin's Longsword"},
%{price: 66.0, title: "Healing Potion"},
%{price: 33.0, title: "Edwin's Rope"},
%{price: 110.00000000000001, title: "Dragon's Spear"}]

The update_in/2 function is useful for updating a map without having to write
all the keys to build a new one. We can use our map/2 function to transform
any list we want. Try it:

items = ["dogs", "cats", "flowers"]
iex> MyList.map(items, &String.capitalize/1)
["Dogs", "Cats", "Flowers"]
iex> MyList.map(items, &String.upcase/1)
["DOGS", "CATS", "FLOWERS"]
iex> MyList.map(["45.50", "32.12", "86.0"], &String.to_float/1)
[45.5, 32.12, 86.0]

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_list.ex
http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

When we use the map, the task of transforming lists becomes easier. All the
work of iterating and building a new list is hidden; we only need to think
about the transformation on each item.

Reducing Lists to One Value
The next task is to create a function that transforms a list into one value. For
example, it can be useful to discover how much income Edwin can have. To
see it, we need to sum all his items’ prices. Let’s write a higher-order function
that will make the job easier:

higher_order_functions/my_list.ex
def reduce([], acc, _function), do: acc
def reduce([head | tail], acc, function) do

reduce(tail, function.(head, acc), function)
end

In the first argument, the MyList.reduce/3 function expects a list that will be
navigated. The second parameter is an initial value to be accumulated during
navigation. The third argument is a function that will be used to apply a
computation on the list’s item and the value accumulated, generating a new
accumulated value. The first function clause is for empty lists. The second
clause iterates recursively on each item, updating the accumulated value.
Let’s sum all of Edwin’s items’ prices using this function:

iex> c("my_list.ex")
iex> sum_price = fn item, sum -> item.price + sum end
iex> MyList.reduce(enchanted_items, 0, sum_price)
340

The initial value to accumulate the items’ price is 0, then on each iteration
reduce uses the sum_price function result to update the accumulated value. The
sum_price function takes two parameters: the item of the list and the current
accumulated value. We sum both values, and the result is the new accumu-
lated value. We can use the reduce/3 function to work with any generic list we
want. Try it:

iex> MyList.reduce([10, 5, 5, 10], 0, &+/2)
30
iex> MyList.reduce([5, 4, 3, 2, 1], 1, &*/2)
120
iex> MyList.reduce([100, 20, 400, 200], 100, &max/2)
400
iex> MyList.reduce([100, 20, 400, 200], 100, &min/2)
20

• Click HERE to purchase this book now. discuss

Creating Higher-Order Functions for Lists • 9

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_list.ex
http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

Using the reduce/3 function, we can focus only on the operation that accumu-
lates the value. The work of iterating over each item by recursively updating
accumulated values is hidden from us.

Filtering Items of a List
The last function we’ll build for lists is very common and useful: filtering a
list by applying some criteria. Going back to Edwin’s shop, let’s imagine the
customers want to see only the products that cost less than 70 gold coins.
We need to filter the shop items by applying the criteria price less than 70.
When we’re filtering, we’re creating a new list with only the elements that
pass the criteria.

Let’s create the following function that will filter the items for us:

higher_order_functions/my_list.ex
def filter([], _function), do: []
def filter([head | tail], function) do

if function.(head) do
[head | filter(tail, function)]

else
filter(tail, function)

end
end

The MyList.filter/2 function calls the given criteria function by passing each list
item. If it returns a falsy value, it means the item should not be on the new
list. Everything that is truthy, not nil or false, means it has passed the criteria
and should be in the new list. For truthy or falsy cases, the function will keep
building the new list and make a recursive call on its tail. Let’s see how much
easier it is now to filter list items:

iex> c("my_list.ex")
iex> MyList.filter(enchanted_items, fn item -> item.price < 70 end)
[%{price: 60, title: "Healing Potion"}, %{price: 30, title: "Edwin's Rope"}]

Using our higher-order function filter/2, we just need to pass a function that
checks if the item’s price is less than 70 gold coins. We can use that function
to filter any list. Try it:

iex> MyList.filter(["a", "b", "c", "d"], &(&1 > "b"))
["c", "d"]
iex> MyList.filter([100, 200, 300, 400], &(&1 < 300))
[100, 200]
iex> MyList.filter(["Alex", "Mike", "Ana"], &String.starts_with?(&1, "A"))
["Alex", "Ana"]
iex> MyList.filter(["a@b", "t.t", "a@b.c"], &String.contains?(&1, "@"))
["a@b", "a@b.c"]

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_list.ex
http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

When we use the filter/2 function, it’s clear which data and filtering criteria we
need to apply. All the complexity of navigating through lists, filtering, building
new lists, and recursing is hidden from us.

Using the Enum Module
The each, map, reduce, and filter list operations are useful. Almost all of the pro-
gramming tasks you’ll do with lists can benefit from these functions. Thanks
to Elixir’s core team, you don’t need to write these higher-order functions
every time you start a new Elixir project, because they’re available in the Enum
module. You wrote all these functions to understand how to create higher-
order functions. From now on, you’ll use them directly from the Enum module.
Now we’ll experiment with more useful higher-order functions from that
module, starting with ones you’ve built. Open your IEx and try this:

iex> Enum.each(["dogs", "cats", "flowers"], &(IO.puts String.upcase(&1)))
DOGS
CATS
FLOWERS
iex> Enum.map(["dogs", "cats", "flowers"], &String.capitalize/1)
["Dogs", "Cats", "Flowers"]
iex> Enum.reduce([10, 5, 5, 10], 0, &+/2)
30
iex> Enum.filter(["a", "b", "c", "d"], &(&1 > "b"))
["c", "d"]

The Enum functions work like our homemade functions. The Enum module has
many useful functions; it’s easy to guess what they do from their names. Let’s
take a quick look:

iex> Enum.count(["dogs", "cats", "flowers"])
3
iex> Enum.uniq(["a", "a", "b", "b", "b", "c"])
["a", "b", "c"]
iex> Enum.sum([10, 5, 5, 10])
30
iex> Enum.sort(["c", "b", "d", "a"], &<=/2)
["a", "b", "c", "d"]
iex> Enum.sort(["c", "b", "d", "a"], &>=/2)
["d", "c", "b", "a"]
iex> Enum.member?([10, 20, 12], 10)
true
iex> Enum.join(["apples", "hot dogs", "flowers"], ", ")
"apples, hot dogs, flowers"

The count/1 function returns the total number of elements, and uniq/1 returns
a new list without duplicated elements. sum/1 returns the sum of all numbers
in a list, member?/2 checks if an item exists in a list, and join/2 combines the

• Click HERE to purchase this book now. discuss

Using the Enum Module • 11

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

list items in one string. The sort/2 is a higher-order function that accepts a
function comparing the elements in a list. The Enum functions work with any
data type that respects the Enumerable protocol.1 Take a look:

iex> upcase = fn {_key, value} -> String.upcase(value) end
iex> Enum.map(%{name: "willy", last_name: "wonka"}, upcase)
["WONKA", "WILLY"]

The map is a data type that implements the Enumerable protocol, so you can
use it with the Enum module functions. On each iteration of a map structure,
we have a tuple with two elements: one for the map key and the other for the
value. We’ll see more about protocols in Chapter 6, Designing Your Elixir
Applications, on page ?.

In the Enum module, we also have useful and complex higher-order functions
that take two functions in the argument. For example, Enum.group_by/3 receives
a function that applies grouping criteria, and it takes a function that generates
the values for each group. Let’s try it with a list that contains medals and the
players who earned them. Create the following medals variable:

iex> medals = [
%{medal: :gold, player: "Anna"},
%{medal: :silver, player: "Joe"},
%{medal: :gold, player: "Zoe"},
%{medal: :bronze, player: "Anna"},
%{medal: :silver, player: "Anderson"},
%{medal: :silver, player: "Peter"}

]

Now let’s show the players that have won each type of medal. To do it, we
need to group by medal type (gold, silver, or bronze), and for each group we
need to build a list with players’ names. Using recursive functions manually
isn’t easy, but using Enum.group_by/3 can be simple. Try it:

iex> Enum.group_by(medals, &(&1.medal), &(&1.player))
%{bronze: ["Anna"], gold: ["Anna", "Zoe"], silver: ["Joe", "Anderson", "Peter"]}

We’ve done a great operation in one line of code. The grouping-criteria function
should return a value that will be used to group the items that have identical
values. The anonymous function we passed &(&1.medal) returns the value of
the medal; that can be :gold, :silver, or :bronze. Then the second function should
return a value that goes in the list of each group. Next we use &(&1.player),
which returns the player name. With this simple call, we’ve built a map that
contains the players grouped by the medals they’ve won.

1. https://hexdocs.pm/elixir/Enumerable.html

• 12

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/elixir/Enumerable.html
http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

The flexible and reusable functions of the Enum module are very common in
daily tasks, so take time to read about the Enum module and play with its
functions. It will help you create simple code since you’re taking advantage
of the facilities Elixir provides.

• Click HERE to purchase this book now. discuss

Using the Enum Module • 13

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

