
Extracted from:

iOS Recipes
Tips and Tricks for Awesome iPhone and iPad Apps

This PDF file contains pages extracted from iOS Recipes, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

iOS Recipes
Tips and Tricks for Awesome iPhone and iPad Apps

Matt Drance
Paul Warren

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jill Steinberg (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-74-6
Printed on acid-free paper.
Book version: P1.0—July 2011

http://pragprog.com

Recipe 31

Tame the Network Activity Indicator

Problem

Your application performs downloads and uploads in multiple places,
queuing or parallelizing them under heavy user activity. You need to reliably
display network status without actively tracking every network operation.

Solution

We can use the networkActivityIndicatorVisible property on UIApplication to convenient-
ly show and hide the network “spinner” in the status bar. This binary switch
has no context, however. If we write an application that performs concurrent
uploads and downloads, it quickly becomes hard to accurately report ongoing
activity. Showing the indicator when every transaction starts is easy, but
how do we know when to hide it? Whether we’re using NSURLConnection or
NSStream, our networking code should not necessarily be responsible for
maintaining the context required to manage the network activity indicator.
We’ll solve this problem with a category on UIApplication that tracks network
connections, automatically showing the indicator when activity begins and
hiding it when it is finished. By using a category, we can call the existing
UIApplication instance rather than managing another object. This especially
makes sense since the activity indicator itself is managed by UIApplication.

This PRPNetworkActivity category maintains a read-only count of active connec-
tions. Two methods, -prp_pushNetworkActivity and -prp_popNetworkActivity, allow any
code to notify the application of network activity. A -prp_resetNetworkActivity
method clears the current state and starts from scratch.

Download NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.h
@interface UIApplication (PRPNetworkActivity)

@property (nonatomic, assign, readonly) NSInteger prp_networkActivityCount;

- (void)prp_pushNetworkActivity;
- (void)prp_popNetworkActivity;
- (void)prp_resetNetworkActivity;

@end

• CLICK HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cdirec/code/NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.h
http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

Remember that because this is a category, it’s important to prefix all of the
method names to ensure they don’t conflict with any methods Apple adds
to UIApplication in future SDK releases.

The implementation is very simple: we declare a static prp_networkActivityCount
variable, which the -prp_pushNetworkActivity and -prp_popNetworkActivity methods
respectively increment and decrement. A simple getter method exposes the
count in a read-only fashion.

Download NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.m
- (NSInteger)prp_networkActivityCount {

@synchronized(self) {
return prp_networkActivityCount;

}
}

- (void)prp_pushNetworkActivity {
@synchronized(self) {

prp_networkActivityCount++;
}
[self prp_refreshNetworkActivityIndicator];

}

- (void)prp_popNetworkActivity {
@synchronized(self) {

if (prp_networkActivityCount > 0) {
prp_networkActivityCount--;

} else {
prp_networkActivityCount = 0;
NSLog(@"%s Unbalanced network activity: count already 0.",

__PRETTY_FUNCTION__);
}

}
[self prp_refreshNetworkActivityIndicator];

}

A few notes about this approach:

• We use a global to store the activity count, but our category methods
operate on an instance of UIApplication. Always be careful when sharing
statics between object instances. An ideal solution might use the asso-
ciated object approach explained in Recipe 40, Store Data in a Category,
on page ?, but since there is only a single UIApplication instance in a given
app, we stuck with the global in the interest of simplicity.

• The methods listed earlier access the activity count while synchronizing
on self, which is the shared application instance since we’ve written a
category on UIApplication. We have added this synchronization because

• CLICK HERE to purchase this book now. discuss

Tame the Network Activity Indicator • 5

http://media.pragprog.com/titles/cdirec/code/NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.m
http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

networking code that uses these category methods is likely to run on
multiple threads. There is more than one way to synchronize Objective-
C code, so we’ve chosen what we saw as the clearest solution.

The -prp_refreshNetworkActivityIndicator method sets the standard networkActivityIndi-
catorVisible property on UIApplication according to the current activity count: if
the count is positive, the network activity indicator is shown; when it goes
back down to 0, the indicator is hidden. Because most of the UIKit is not
understood to be thread-safe and the networkActivityIndicatorVisible property is
not explicitly documented as such, we write a check to ensure the network
activity indicator is touched only from the main thread.

Download NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.m
- (void)prp_refreshNetworkActivityIndicator {

if (![NSThread isMainThread]) {
SEL sel_refresh = @selector(prp_refreshNetworkActivityIndicator);
[self performSelectorOnMainThread:sel_refresh

withObject:nil
waitUntilDone:NO];

return;
}

BOOL active = (self.prp_networkActivityCount > 0);
self.networkActivityIndicatorVisible = active;

}

We now have reliable network state management accessible from anywhere
in our application and completely decoupled from the rest of our code. Just
call -prp_pushNetworkActivity whenever starting a connection, and call -prp_popNet-
workActivity whenever the connection terminates.

The NetworkActivityCenter sample project demonstrates this code in action. We’ve
modified the PRPDownload class from an earlier recipe to push and pop activity
based on the status of each download. Neither these download objects nor
the test app’s view controller has any idea of one another, let alone what
each is doing with the network. Each object reports its state to the UIApplication
category methods, which decide when the network activity indicator should
be activated or deactivated.

This project illustrates an application of the asynchronous PRPConnection
mechanism from Recipe 32, Simplify Web Service Connections, on page ?.
We’ve tied a download to each row in the table and modified the PRPConnection
class to use the category methods from this recipe. The network activity
indicator shows as soon as downloads begin and automatically hides when
the last download is finished or interrupted. The code you see in this class
stays the same whether 1 or 100 downloads are in progress.

• CLICK HERE to purchase this book now. discuss

Tame the Network Activity Indicator • 6

http://media.pragprog.com/titles/cdirec/code/NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.m
http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

