
Extracted from:

iOS Recipes
Tips and Tricks for Awesome iPhone and iPad Apps

This PDF file contains pages extracted from iOS Recipes, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

iOS Recipes
Tips and Tricks for Awesome iPhone and iPad Apps

Matt Drance
Paul Warren

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jill Steinberg (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-74-6
Printed on acid-free paper.
Book version: P1.0—July 2011

http://pragprog.com

Recipe 15

Simplify Table Cell Production

Problem

UIKit provides an efficient reuse mechanism for table view cells, keeping
overhead low and minimizing costly allocations that slow down scrolling.
Although this mechanism works well to curb resource consumption, it tends
to be verbose, repetitive, and, most of all, error prone. This common pattern
begs for a solution that minimizes controller code and maximizes reuse
across multiple views or even applications.

Solution

A basic UITableView layout, as seen in the iPod and Contacts applications, is
simple enough to re-create without causing too many headaches: the cells
all use the same boilerplate UITableViewCellStyle. Once we venture outside of
this comfort zone, however, our code can get messy rather quickly. Consider
a custom cell with two images and a text label. Our -tableView:cellForRowAtIndex-
Path: method may start off like this:

static NSString *CellID = @"CustomCell";

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellID];

if (cell == nil) {
cell = [[[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellID]

autorelease];
UIImage *rainbow = [UIImage imageNamed:@"rainbow.png"];
UIImageView *mainImageView = [[UIImageView alloc] initWithImage:rainbow];
UIImageView *otherImageView = [[UIImageView alloc] initWithImage:rainbow];
CGRect iconFrame = (CGRect) { { 12.0, 4.0 }, rainbow.size };
mainImageView.frame = iconFrame;
iconFrame.origin.x = CGRectGetMaxX(iconFrame) + 9.0;
altImageView.frame = iconFrame;

[cell.contentView addSubview:mainImageView];
[cell.contentView addSubview:otherImageView];
UILabel *label = [[UILabel alloc] initWithFrame:labelFrame];
[cell.contentView addSubview:label];

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

[mainIcon release];
[otherIcon release];
[label release];

}

return cell;

Note we haven’t even configured the cell yet! When reusing a cell, how do
we get at those now-anonymous subviews that were added during creation?
We have two options: set tag literals on the subviews, which we then use to
fish them back out at reuse time; or write a UITableViewCell subclass with ex-
plicit properties. Going the subclass route is much more attractive because
it does the following:

• Defines a contract (properties) for accessing the subviews

• Avoids the danger of tag collisions in the cell hierarchy (multiple subviews
with the same tag)

• Decouples the cell’s layout from the view controller, enabling code reuse
across views and projects

By using a subclass, we get a number of other opportunities to simplify the
table-building process. Every table view data source inevitably has the same
cell dequeue/alloc code in it. This code is not just redundant; it’s also fragile:
a misspelled cell identifier, a single instead of a double equals in our nil
check—subtle errors lead to performance hits and wasted debugging time.
If we didn’t have to constantly copy and paste this redundant code, or even
look at it, our routine for building table views would be much less tedious.

Enter PRPSmartTableViewCell: a foundational subclass of UITableViewCell that
eliminates clutter in our table view controllers and prevents costly bugs in
our scattered cell boilerplate. The class’s primary task is to abstract away
that boilerplate so that, ideally, we never have to worry about it again. The
class has a special initializer method and two convenience methods, which
we’ll explore next.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.h
@interface PRPSmartTableViewCell : UITableViewCell {}

+ (id)cellForTableView:(UITableView *)tableView;
+ (NSString *)cellIdentifier;

- (id)initWithCellIdentifier:(NSString *)cellID;

@end

• CLICK HERE to purchase this book now. discuss

Simplify Table Cell Production • 5

http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.h
http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

The +cellForTableView: class method handles cell reuse for a table view that’s
passed by the caller—our table view controller.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.m
+ (id)cellForTableView:(UITableView *)tableView {

NSString *cellID = [self cellIdentifier];
UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:cellID];
if (cell == nil) {

cell = [[[self alloc] initWithCellIdentifier:cellID] autorelease];
}
return cell;

}

This code should look familiar: it’s nearly identical to the reuse code you’ve
surely written dozens (if not hundreds) of times as an iOS developer. Note,
however, that the cell identifier string is obtained from another class method:
+cellIdentifier. This method uses the cell’s class name as the identifier by de-
fault, even for subclasses of PRPSmartTableViewCell you write. Now, whenever
we decide to write a custom cell class, we’re guaranteed a unique cell iden-
tifier for free. Note that the identifier is not marked static as you’ve seen in
most sample code, so there is some extra allocation going on in the default
implementation. If you find this to be a problem, you can always override
(or edit) +cellIdentifier to change its behavior.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.m
+ (NSString *)cellIdentifier {

return NSStringFromClass([self class]);
}

Finally, we use a new designated initializer, -initWithCellIdentifier:, to set up the
cell and its layout. This is where we’d put the verbose layout code that would
otherwise live in our controller.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.m
- (id)initWithCellIdentifier:(NSString *)cellID {

return [self initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:cellID];

}

With this new pattern, here’s how we’d write and use our table cell subclass:

1. Create a subclass of PRPSmartTableViewCell.

2. Override -initWithCellIdentifier:.

3. Call +cellForTableView: from our table view controller.

• CLICK HERE to purchase this book now. discuss

Simplify Table Cell Production • 6

http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.m
http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.m
http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.m
http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

Now let’s take a look at our table view controller code for producing a custom
PRPSmartTableViewCell:

Download SmarterTableCells/Classes/PRPRainbowTableViewController.m
- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {
PRPDoubleRainbowCell *cell = [PRPDoubleRainbowCell

cellForTableView:tableView];
cell.mainLabel.text = [self.quotes objectAtIndex:indexPath.row];
return cell;

}

The controller code is significantly reduced and much more readable—it
now contains only the customization of the cell for that particular view. All
the cell’s characteristic logic and layout is hidden away in the cell class, al-
lowing it to be easily reused anywhere else in this or another project. If you
were planning to write a UITableViewCell subclass, this additional code could
save you a lot of work in the long run. If you’re writing a basic table view
with one of the standard cell types, it could be overkill.

This pattern pays especially large dividends when you’re writing a heavily
customized table view with assorted types of cells. We’ll explore this further
in Recipe 18, Organize Complex Table Views, on page ?.

You can also easily extend this pattern to use custom cells created in Inter-
face Builder, as you’ll see in the next recipe.

• CLICK HERE to purchase this book now. discuss

Simplify Table Cell Production • 7

http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPRainbowTableViewController.m
http://pragprog.com/titles/cdirec
http://forums.pragprog.com/forums/cdirec

