
Extracted from:

The Passionate Programmer
Creating a Remarkable Career

in Software Development

This PDF file contains pages extracted from The Passionate Programmer,
published by the Pragmatic Bookshelf. Formore information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and
printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http://pragprog.com.

Copyright © 2009 Chad Fowler.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-34-0
Printed on acid-free paper.
Book version: P6.0—June 2012

http://pragprog.com

Tip 5

Invest in Your Intelligence

When choosing what to focus on, it can be tempting to simply look
at the technologies that yield the most jobs and focus on those. Java
is big. .NET is big. Learning Java has a simple, transitive effect: if I
know Java, I can apply for, and possibly get, a job writing Java code.

Using this logic, it would be foolish to choose to invest in a niche
technology, especially if you had no plans to try to exploit that niche.

TIOBE Software uses Internet search engines to indicate the relative
popularity of programming languages, based onpeople talking about
those languages on the Internet.3According to TIOBE’swebsite, “The
ratings are based on the worldwide availability of skilled engineers,
courses, and third-party vendors.” It’s definitely not a scientifically
provable measure of popularity, but it’s a pretty good indicator.

At the time of writing, the most popular language is Java, followed
by C. C# is in a respectable sixth place but with a slight upward tra-
jectory. SAP’s ABAP is in seventeenth place and is moving slowly
downward. Ruby, which is my personal favorite programming lan-
guage—the one I do pretty much all of my serious work in and the
one forwhich I co-organize an international conference every year—is
in eleventh place. But at the time the first edition of this book was
published, it wasn’t even in the top twenty. It was below ABAP!

Was I crazy to use Ruby or just stupid? I must be one of the two,
right?

In his essay “Great Hackers,”4 Paul Graham annoyed the industry
with the assertion that Java programmers aren’t as smart as Python
programmers. He made a lot of stupid Java programmers mad (did
I say that?), causing a lot of them towrite counterarguments on their
websites. The violent reaction indicates that he touched a nerve. I
was in the audience when his essay was first presented, in the form
of a speech. For me, it sparked a flashback.

3. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
4. http://paulgraham.com/gh.html

• CLICK HERE to purchase this book now. discuss

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://paulgraham.com/gh.html
http://pragprog.com/titles/cfcar2
http://forums.pragprog.com/forums/cfcar2

I was on a recruiting trip in India weeding through hundreds of
candidates for only tens of jobs, and the interview teamwas exhaust-
ing itself and running out of time because of a poor interview-to-hire
hit rate. Heads hurting and eyes red, we held a late-night meeting
to discuss a strategic change in the way we would go through the
candidates. We had to either optimize the process so we could inter-
viewmore people or somehow interview betterpeople (or both).With
what little was left of my voice after twelve straight hours of trying
to drag answers out of dumbstruckprogrammers, I argued for adding
Smalltalk to the list of keywords our headhunters were using to
search their résumé database. “But, nobody knows Smalltalk in In-
dia,” cried the human resources director. Thatwasmypoint. Nobody
knew it, andprogramming in Smalltalkwas a fundamentally different
experience than programming in Java. The varying experiencewould
give candidates a different level of expectations, and the dynamic
nature of the Smalltalk environment would reshape the way a Java
programmer would approach a problem. My hope was that these
factors would encourage a level of technical maturity that I hadn’t
been seeing from the candidates I’d met so far.

The addition of Smalltalk to the requirements list yielded a candidate
pool that was tiny in contrast to our previous list. These people were
diamonds in the rough. They really understood object-oriented pro-
gramming. They were aware that Java isn’t the idealistic panacea it’s
sometimes made out to be. Many of them loved to program! Where
have you been for the past two weeks?we thought.

Unfortunately, our ability to attract these developers for the salaries
we were able to pay was limited. They were calling the shots, and
most of them chose to stay where they were or to keep looking for a
new job. Though we failed to recruit many of them, we learned a
valuable recruiting lesson: we were more likely to extend offers to
candidates with diverse (and even unorthodox) experience than to
those whose experiences were homogenous. My explanation is that
either good people seek out diversity, because they love to learn new
things, or being forced into alien experiences and environments cre-
ated more mature, well-rounded software developers. I suspect it’s
a little of both, but regardless of why it works, we learned that it
works. I still use this technique when looking for developers.

So, other than trying to showup onmy radar screenwhen I’m looking
to hire someone, why else would you want to invest in fringe

6 • Choosing Your Market

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/cfcar2
http://forums.pragprog.com/forums/cfcar2

technologies that you may rarely or never have an opportunity to
actually get paid to use?

For me, as a hiring manager, the first reason is that it shows that
you’re interested. If I know you learned something for the sake of
self-development and (better) pure fun, I know you are excited and
motivated about your profession. It drives me crazy to ask people
whether they’ve seen or used certain not-quite-mainstream technolo-
gies only to hear, “I haven’t been given the opportunity to work on
that” in return. Given the opportunity? Neither was I! I took the op-
portunity to learn.

I haven’t been given the
opportunity…?

Seize the opportunity!

More important than portraying
the perception of being suitably
motivated and engaged by your
field is that exposure to these
fringe technologies andmethodolo-

gies actually makes you deeper, better, smarter, and more creative.

If that’s not good enough reason, then you’re probably in the wrong
profession.

Act on It!

1. Learn a new programming language. But, don’t go from Java to C#
or from C to C++. Learn a new language that makes you think in a
new way. If you’re a Java or C# programmer, try learning a language
like Smalltalk or Ruby that doesn’t employ strong, static typing. Or,
if you’ve been doing object-oriented programming for a long time,
try a functional language like Haskell or Scheme. You don’t have to
become an expert. Work through enough code that you truly feel
the difference in the new programming environment. If it doesn’t
feel strange enough, either you’ve picked the wrong language or
you’re applying your old way of thinking to the new language. Go
out of your way to learn the idioms of the new language. Ask old-
timers to review your code and make suggestions that would make
it more idiomatically correct.

• CLICK HERE to purchase this book now. discuss

Invest in Your Intelligence • 7

http://pragprog.com/titles/cfcar2
http://forums.pragprog.com/forums/cfcar2

