
Extracted from:

Mastering Clojure Macros
Write Cleaner, Faster, Smarter Code

This PDF file contains pages extracted from Mastering Clojure Macros, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Mastering Clojure Macros
Write Cleaner, Faster, Smarter Code

Colin Jones

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Rashid (editor)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-22-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2014

http://pragprog.com
rights@pragprog.com

Introduction
It probably won’t surprise you to learn that this is a book about macros in
Clojure. The title dashes away any hope of keeping that a secret, which is
fine. I’m not big on surprises anyway.

Furthermore, this book is about mastering macros. Now, mastery is a pretty
audacious goal: some folks say it takes 10,000 hours to master any skill,
which is way more time than it’d take you to memorize this book forwards
and backwards. There’s always more to learn. But this is a path on the journey
to mastery. So pack your things—it’ll be a fun trip!

Why Clojure?
There are a number of reasons to learn Clojure. The discipline of staying
immutable by default, the simplicity of functions as first-class entities, the
practicality of the JVM, and… well, I could go on and on, but this book’s goal
isn’t to sell you on Clojure. There are already several fantastic books out there
for that. My first Clojure book was Programming Clojure [Hal09], and my most
recent intro-to-Clojure recommendation has been Clojure Programming [ECG12]
(trust me, these are actually two different books, despite their naming simi-
larities). The Joy of Clojure [FH11] is excellent as well, but it can be a bit
advanced for Clojure newcomers. This book probably falls into the same cat-
egory: you should already know a bit of Clojure in order to get the most out
of this book.

So in the interest of focus and brevity, I’m going to be assuming throughout
this book that you already know some Clojure. That said, if you haven’t
written a single line of Clojure before, never fear! You should set this book
aside briefly and go through the Clojure Koans,1 and I’ll meet you back here
in a couple of hours. We’ll be tackling some advanced topics in this book, so
if you haven’t worked through the koans, a book, or a Clojure project, you

1. http://clojurekoans.com

• Click HERE to purchase this book now. discuss

http://clojurekoans.com
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

may need to spend some extra time with some of the chapters in this book
to get more Clojure under your belt.

You’ll also want to make sure you have Leiningen2 installed and know how
to do things like launch a REPL (Read-Eval-Print Loop, lein repl from a command
line), read the in-REPL docstrings, and peek here and there at the source
code.

From this point forward, you should know your way around a Clojure REPL.
I’ll do my best to keep the progression steady through the tutorial part of the
book, with each step building upon the one before. But my realistic, software-
estimating side says I won’t think of everything, and here and there I’ll get
too excited and skip a step. I hope that when that happens, you’ll reach for
your nearest REPL, recover quickly, and forgive my exuberance.

Why Macros?
Clojure stands on the shoulders of giants, with influences from several func-
tional and object-oriented languages, database and distributed systems
technologies, and of course the tremendous force of nature that is its creator,
Rich Hickey. And despite Clojure’s youth, we’ve already started to see some
cross-pollination into other language communities. But one of the real killer
features of Clojure is the macro system, which is similar in many ways to
Common Lisp’s but brings its own modern flair to the area.

Macros in Clojure are an elegant metaprogramming system, a means to
accomplish goals that might seem impossible in other languages. How hard
would it be to add pattern matching or a new control flow structure to your
language as a library (rather than patching the core language)? In Clojure,
people like you and me have the power to do these things ourselves.

It’s true in a sense that all general-purpose languages are equally powerful,
but we programmers know better. Our limitations and goals are not the same
as those of a Turing machine. We want lean, clean code that expresses our
intent clearly while allowing us to tell the machine what to do as succinctly
as possible. Macros are a way to get there.

Metaprogramming in Non-Lisps
Lisp certainly isn’t the only language family with metaprogramming facilities.
C has a macro system that allows textual replacement as a preprocessing
step at the start of compilation. C++ has a complex and powerful template

2. http://leiningen.org/

Introduction • vi

• Click HERE to purchase this book now. discuss

http://leiningen.org/
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

metaprogramming feature that’s itself Turing-complete. Plenty of dynamic
languages, like JavaScript, Python, and Ruby, have eval functions that acts
on strings to produce a result. Ruby, in particular, has quite a few nice fea-
tures, and Scala’s macro system even allows you to manipulate the parse
tree! But here’s fair warning: once you’ve experienced Clojure’s macros, you
may not want to go back.

You may notice that in this book, sometimes I’ll refer to Clojure, and some-
times to Lisp in general (since Clojure is part of the Lisp family of languages).
This shouldn’t be too confusing, but let’s take a moment to clarify, just to
make sure. When I talk about Lisp, the advice will apply across all the major
Lisps (including Clojure, Scheme, and Common Lisp). Elixir is an interesting
edge case: it’s not quite a Lisp, but its macro system sure walks and talks
like one. But just because I mention Clojure specifically doesn’t mean that
the advice only applies to Clojure. It may well apply in other Lisps too, but
not necessarily.

Who Is This Book For?
This book assumes that you’ve programmed in Clojure a bit but that you’re
not yet a master of Clojure macros. Experienced Clojure programmers will
no doubt recognize situations they’ve encountered before, whereas newer
Clojure folks will learn to avoid some of the stumbles the rest of us have made
when learning macros. Macros are typically one of the most difficult features,
and this book will help anyone who wants to understand how they work and
when to use them.

What’s in This Book?
Chapter 1, Build a Solid Foundation, on page ? introduces the basic building
blocks that will allow you to understand how macros work and what kinds
of things it’s possible to do with them.

Chapter 2, Advance Your Macro Techniques, on page ? shows how and why
to use syntax-quoting, unquoting, and gensyms. These are some the trickiest
concepts for new macro writers, but also some of the most useful.

Chapter 3, Use Your Powers Wisely, on page ? takes a step back to dig into
some of the problems macros can create, and how you can avoid those
problems.

Chapter 4, Evaluate Code in Context, on page ? starts the field guide portion
of the book, and covers the first main use case you see in the wild: wrapping
a block of code in a context for its execution.

• Click HERE to purchase this book now. discuss

Who Is This Book For? • vii

http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

Chapter 5, Speed Up Your Systems, on page ? digs into how macros can
help you write very fast Clojure code without sacrificing concision and
cleanliness.

Chapter 6, Build APIs That Say Just What They Mean, on page ? outlines
some ways that macros allow you to provide easy-to-use APIs that let users
write only the minimum amounts of code.

Chapter 7, Bend Control Flow to Your Will, on page ? shows you how you
can invent your own loops and other control flow mechanisms without relying
on the language to provide you with new ones.

Chapter 8, Implement New Language Features, on page ? goes a step further
and shows you how you can steal some of the best features from other lan-
guages and introduce them to your Clojure code with macros.

How to Read This Book
There are lots of code examples in this book, and I suggest trying them out
in your own REPL, creating a toy project for the longer examples. Leiningen3

is the Clojure build tool of choice, and lein new macrobook will give you a new
project to play around in. The examples in this book have been tested using
Clojure 1.6.0, so you’re safest using that version of Clojure when you try
things out. But since the macro system changes so rarely, I anticipate that
many earlier and future versions will work just fine as well.

This book is intended to be read front to back, but if you’re the adventurous
or time-constrained sort, here are a few ideas to get you the information you’re
looking for:

The first two chapters, Chapter 1, Build a Solid Foundation, on page ? and
Chapter 2, Advance Your Macro Techniques, on page ?, teach you all the
building blocks you’ll need to write your own macros. If you already have a
pretty good working knowledge of macros and have written and debugged
several of them yourself, you may wish to skip straight to Chapter 2, Advance
Your Macro Techniques, on page ?.

Everyone should read Chapter 3, Use Your Powers Wisely, on page ?, where
you’ll see some of the problems that macros can cause and why you don’t
want to use them all the time.

In the remaining chapters, starting with Chapter 4, Evaluate Code in Context,
on page ?, we’ll look in depth at some use cases for macros, with examples

3. http://leiningen.org

Introduction • viii

• Click HERE to purchase this book now. discuss

http://leiningen.org
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

from both the Clojure language itself and community libraries. In these
chapters, you’ll see reasons you’d use macros in practice, despite their
imperfections, and sometimes you’ll see ways to accomplish the same goals
with normal functions.

It’s fine to skip around once you’ve finished Chapter 3, Use Your Powers
Wisely, on page ?. By that point you’ll have all the basic tools you need to
understand the rest of the book. The macros you see will generally get more
complex as the chapters progress, but there are minimal dependencies among
the later chapters.

Online Resources
Take a look at this book’s official website,4 where you can order copies of this
book as gifts and download the book’s source code. You can also submit error
reports.5

Please send specific book questions or commentary directly to me via the
forums on the official website, but there are also some wonderful community
resources for more general questions, or ones outside the scope of this book.
I highly recommend visiting the #clojure IRC channel on Freenode and the
Clojure mailing list6 for those questions that aren’t specifically about this
book.

This book is a brief one, but don’t be fooled–there’s a lot of material to cover.
Don’t hesitate to try things out at the REPL and reread sections that move a
bit too quickly. A small time investment now could pay off in deeper under-
standing later on.

Now let’s get started by digging into the details of how Clojure macros work.

4. http://pragprog.com/book/cjclojure/clojure-macros
5. http://pragprog.com/book/cjclojure/errata
6. http://groups.google.com/group/clojure

• Click HERE to purchase this book now. discuss

Online Resources • ix

http://pragprog.com/book/cjclojure/clojure-macros
http://pragprog.com/book/cjclojure/errata
http://groups.google.com/group/clojure
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

