
Extracted from:

Mastering Clojure Macros
Write Cleaner, Faster, Smarter Code

This PDF file contains pages extracted from Mastering Clojure Macros, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Mastering Clojure Macros
Write Cleaner, Faster, Smarter Code

Colin Jones

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Rashid (editor)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-22-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2014

http://pragprog.com
rights@pragprog.com

Most of the macros you’ve seen so far have been small and straightforward.
Wouldn’t it be great if they could all be like that? Unfortunately, as you do
more and more with macros, the syntax you know so far can get unwieldy.

What if you had to write an assert macro like the one that comes with Clojure?
Given what you know at this point, you’d need to do something like this:

advanced_mechanics/assert_no_syntax_quote.clj
(defmacro assert [x]

(when *assert* ;; check the dynamic var `clojure.core/*assert*` to make sure
;; assertions are enabled

(list 'when-not x
(list 'throw

(list 'new 'AssertionError
(list 'str "Assert failed: "

(list 'pr-str (list 'quote x))))))))

user=> (assert (= 1 2))
;=> AssertionError Assert failed: (= 1 2) user/eval214 (NO_SOURCE_FILE:1)

user=> (assert (= 1 1))
;=> nil

And this isn’t even a complete solution! We’ve skipped the arity1 that takes
a failure message string, to keep things from getting too ridiculous. But there’s
a lot to read and learn here, right?

I don’t know about you, but I find it very hard to parse all those nested lists
to discover what’s going to come out in the macroexpansion. Luckily we know
about macroexpand from Macroexpansion, on page ?, so it doesn’t have to stay
a mystery for long:

advanced_mechanics/assert_no_syntax_quote_macroexpanded.clj
(macroexpand '(assert (= 1 2)))
;=> (if (= 1 2)
; nil
; (do (throw (new AssertionError
; (str "Assert failed: "
; (pr-str (quote (= 1 2))))))))
;;; [indentation for clarity]

How can we do this better? Maybe you already have some ideas about how
we can make this code look much more like the code it generates. To do so,
we’ll use syntax-quote for the first time.

1. http://en.wikipedia.org/wiki/Arity

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/assert_no_syntax_quote.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/assert_no_syntax_quote_macroexpanded.clj
http://en.wikipedia.org/wiki/Arity
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

Syntax-Quoting and Unquoting
The big problem with this assert implementation is that it takes a pretty big
structural leap to go from the macro implementation to the result of the
macroexpansion. This is no problem for the compiler, and our human brains
can work it out too, but there’s an easier way. The syntax-quote gives us a
way to structure a macro’s code to look much more like its macroexpansion.

The syntax-quote lets us create lists similar to the way we create them with
a normal quote, but it has the added benefit of letting us temporarily break
out of the quoted list and interpolate values with an unquote. Think of it as
a template, where we can punch holes and insert values wherever we like.
For instance, if we had a list where we wanted to insert a value, our normal
quote wouldn’t fly:

advanced_mechanics/normal_quote_is_stubborn.clj
user=> (def a 4)
;=> #'user/a
user=> '(1 2 3 a 5)
;=> (1 2 3 a 5)

user=> (list 1 2 3 a 5)
;=> (1 2 3 4 5)

The fourth element in the first list we created is just the symbol a. If we want
the value of a, we have to either use the more verbose list construction, or use
a syntax-quote with an unquote:

advanced_mechanics/syntax_quote_1.clj
user=> (def a 4)
;=> #'user/a
user=> `(1 2 3 ~a 5)
;=> (1 2 3 4 5)

If you don’t see the difference in these two quote characters at first, look a
wee bit closer. The normal quote (') looks like it’s on the straight and narrow,
and the syntax-quote (`) is a little cockeyed and apparently ready to party.
You might also know the syntax-quote as the backtick. The unquote (~), well,
it unquotes, letting us insert evaluations into the syntax-quoted expression.

If we take a look at how assert is actually implemented, we see that syntax-
quote and unquote completely solve the verbosity problem we saw earlier:

advanced_mechanics/assert_syntax_quote.clj
(defmacro assert [x]

(when *assert*
`(when-not ~x

(throw (new AssertionError (str "Assert failed: " (pr-str '~x)))))))

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/normal_quote_is_stubborn.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_1.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/assert_syntax_quote.clj
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

Wow! That’s a lot less code than the nested-list version, and it looks a lot
closer to the macroexpansion. As a result, it’s easier to understand and
maintain. There’s one potentially tricky bit left, though: what does it mean
when we say '~x within a syntax-quoted expression?

The REPL is a great place to experiment whenever you see something you
don’t understand. Why don’t we give it a try?

advanced_mechanics/syntax_quote_2.clj
user=> (def a 4)
;=> #'user/a
user=> `(1 2 3 '~a 5)
;=> (1 2 3 (quote 4) 5)

Aha! So this strange '~ dance gives us a way to quote the result of evaluation
and plug that into a slot in the syntax-quote expression.

Recall from our introduction to quoting on page ? that the normal quote is
a reader macro expanding to (quote ...). Well, it turns out that the unquote ~
is another reader macro. So an expanded version of this would look like:

advanced_mechanics/syntax_quote_3.clj
user=> `(1 2 3 (quote (clojure.core/unquote a)) 5)
;=> (1 2 3 (quote 4) 5)

Internally, Clojure’s reader has some special code to walk through the syntax-
quote form looking for clojure.core/unquote occurrences and unquoting those
things. I wouldn’t try to use clojure.core/unquote outside the scope of a syntax-
quote, though—it won’t work unless you’ve written a macro that makes it
work. Leiningen2 (as of version 2.3.4) actually allows the unquote to be used
in project.clj for evaluation, but it’s now discouraged in favor of read-eval. That
var (clojure.core/unquote) is unbound by default, and it’s unclear whether it’s
strictly needed by the language, since everything using it looks for a symbol,
not a var.

Joe asks:

What’s Read-eval?
Read-eval is the name of the Clojure reader macro that allows you to evaluate code
during a read. For instance, (read-string "#=(+ 1 2)") returns 3, not (+ 1 2) as you’d get
without the #=. This has security implications for read and anything that depends on
it, so you should always be careful not to read user input, preferring something like
clojure.edn/read instead. Generally you should make it a goal to steer clear of read-eval
whenever possible.

2. https://leiningen.org

• Click HERE to purchase this book now. discuss

Syntax-Quoting and Unquoting • 7

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_2.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_3.clj
https://leiningen.org
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

There are other strange ways we can mix and match these quotes and
unquotes as well, but first let’s see a special kind of unquote called unquote-
splicing. Let’s say we have a list in hand of an unknown length, and we want
to insert all the elements from that list into another list. Using the unquote that
we already know about won’t fly here, but we can use the usual concat to get
the result we want. Always remember that when you hit a wall in writing
macros, you can fall back on all your normal Clojure-writing experience, since
when you write macros you’re manipulating normal data structures like lists.

advanced_mechanics/unquote_splicing_1.clj
user=> (def other-numbers '(4 5 6 7 8))
;=> #'user/other-numbers
user=> `(1 2 3 ~other-numbers 9 10)
;=> (1 2 3 (4 5 6 7 8) 9 10)
user=> (concat '(1 2 3) other-numbers '(9 10))
;=> (1 2 3 4 5 6 7 8 9 10)

This concat version is a little unsatisfying. It works fine for this use case, but
it might not be so great if we needed to inject the values into a syntax-quoted
expression. Luckily, the unquote-splicing reader macro, ~@, gives us a succinct
and fully syntax-quote-compatible way of doing the same thing:

advanced_mechanics/unquote_splicing_2.clj
user=> (def other-numbers '(4 5 6 7 8))
;=> #'user/other-numbers
user=> `(1 2 3 ~@other-numbers 9 10)
;=> (1 2 3 4 5 6 7 8 9 10)

And there are hooks in Clojure’s syntax-quote implementation in the reader
that look for clojure.core/unquote-splicing occurrences, just like with the normal
unquote, to make this behavior possible.

Syntax-quote As a Macro?

Believe it or not, it’s also possible for syntax-quote to be written as a macro, and at
least two people have created projects doing just that:

• https://github.com/brandonbloom/backtick
• https://github.com/hiredman/syntax-quote

So one day we might very well see the syntax-quote arise from the dark depths of the
Reader into the light of macro-land.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unquote_splicing_1.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unquote_splicing_2.clj
https://github.com/brandonbloom/backtick
https://github.com/hiredman/syntax-quote
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

Besides the ability to interpolate values when syntax-quoting, there’s an
additional implication for symbols that occur within the syntax-quoted form.
Take a look at the difference between this normal-quoted expression and its
syntax-quoted sibling:

advanced_mechanics/syntax_quote_4.clj
user=> '(a b c)
;=> (a b c)
user=> `(a b c)
;=> (user/a user/b user/c)

With the syntax-quoted version, the symbols all include the namespaces
where the syntax-quote appears! We say that these symbols are namespace-
qualified. At first this might seem strange, but there’s a good reason for it.
Imagine you had this macro (which, as you’ll see in Chapter 3, Use Your
Powers Wisely, on page ?, is a bad idea to begin with, but we’ll use it here
for clarity):

advanced_mechanics/syntax_quote_5.clj
user=> (defmacro squares [xs] (list 'map '#(* % %) xs))
;=> #'user/squares
user=> (squares (range 10))
;=> (0 1 4 9 16 25 36 49 64 81)

Easy enough—we just map over the input collection, squaring each element.

What do you think would happen if we were to use this macro from a
namespace where map meant something different?

advanced_mechanics/syntax_quote_6.clj
user=> (ns foo (:refer-clojure :exclude [map]))
;=> nil
foo=> (def map {:a 1 :b 2})
;=> #'foo/map
foo=> (user/squares (range 10))
;=> (0 1 2 3 4 5 6 7 8 9)
foo=> (user/squares :a)
;=> :a
foo=> (first (macroexpand '(user/squares (range 10))))
;=> map
foo=> ({:a 1 :b 2} :nonexistent-key :default-value)
;=> :default-value

So in a situation like this, since the verb map is an unqualified symbol, the
squares macro call in the namespace foo will cause foo/map to be used as a
function. The squaring function gets passed in as the value to look up, and
the not-found default gets returned as the result in these cases. Well, this
clearly isn’t what we wanted when we wrote that macro, and that’s where

• Click HERE to purchase this book now. discuss

Syntax-Quoting and Unquoting • 9

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_4.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_5.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_6.clj
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

syntax-quote’s namespace qualification leaps to the rescue. If we instead
define the squares macro using a syntax-quote (or if we’re into making things
cumbersome, namespace-qualifying the map symbol ourselves), we don’t have
this problem:

advanced_mechanics/syntax_quote_7.clj
user=> (defmacro squares [xs] `(map #(* % %) ~xs))
;=> #'user/squares
user=> (squares (range 10))
;=> (0 1 4 9 16 25 36 49 64 81)
user=> (ns foo (:refer-clojure :exclude [map]))
;=> nil
foo=> (def map {:a 1 :b 2})
;=> #'foo/map
foo=> (user/squares (range 10))
;=> (0 1 4 9 16 25 36 49 64 81)
foo=> (first (macroexpand '(user/squares (range 10))))
;=> clojure.core/map

This is a great example of how Clojure’s macro system tries to help you avoid
shooting yourself in the foot. Use and master the syntax-quote, and your
macro-writing life will be much easier. But we do need to go just a bit further
to get you all the syntax-quoting knowledge you need.

If we had chosen to write the squares macro in a slightly different way, using
the fn special form instead of the shortcut syntax (#(* % %)), we would have
seen an error:

advanced_mechanics/gensym_1.clj
user=> (defmacro squares [xs] `(map (fn [x] (* x x)) ~xs))
;=> #'user/squares
user=> (squares (range 10))
;=> CompilerException java.lang.RuntimeException:
; Can't use qualified name as parameter: user/x, compiling: (NO_SOURCE_PATH:1:1)

Ack! The namespace expansion has bitten us in this case, rather than helping.
We could roll back to the list approach without too much pain here, but we’d
really like to take advantage of syntax-quote’s benefits. Given what you know
about syntax-quoting and unquoting, you can extrapolate to a solution that
puts a non-namespaced symbol in the macroexpansion:

advanced_mechanics/unhygienic_1.clj
user=> `(* ~'x ~'x)
;=> (clojure.core/* x x)

This solution would work fine for our use case: we could slap ~' in front of
all the xs in the definition of squares and have a working implementation in
no time:

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/syntax_quote_7.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/gensym_1.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unhygienic_1.clj
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

advanced_mechanics/unhygienic_2.clj
user=> (defmacro squares [xs] `(map (fn [~'x] (* ~'x ~'x)) ~xs))
;=> #'user/squares
user=> (squares (range 10))
;=> (0 1 4 9 16 25 36 49 64 81)

And because the scope of x is limited to that anonymous squaring function,
we don’t have the namespace-related problems we saw before. However, let’s
expand our worldview to include macros other than the now-worn-out squares:

advanced_mechanics/unhygienic_3.clj
user=> (defmacro make-adder [x] `(fn [~'y] (+ ~x ~'y)))
;=> #'user/make-adder
user=> (macroexpand-1 '(make-adder 10))
;=> (clojure.core/fn [y] (clojure.core/+ 10 y))

So make-adder expands into a function definition, and that function adds the
macro’s argument to the function’s argument. This has a strange result when
we try to use it:

advanced_mechanics/unhygienic_4.clj
user=> (defmacro make-adder [x] `(fn [~'y] (+ ~x ~'y)))
;=> #'user/make-adder
user=> (def y 100)
;=> #'user/y
user=> ((make-adder (+ y 3)) 5)
;=> 13

Despite the fact that we defined y to be 100, it looks like the value being used
for y is 5! Why do you think this is? By macroexpanding the make-adder call in
question, we can see that we’re creating a function that takes one argument
named y, which shadows the (def y 100) definition:

advanced_mechanics/unhygienic_5.clj
user=> (macroexpand-1 '(make-adder (+ y 3)))
;=> (clojure.core/fn [y] (clojure.core/+ (+ y 3) y))

If you were trying to use this version of make-adder without digging into the
macro definition, you’d think this was horribly broken, wouldn’t you? We’ve
accidentally allowed what’s called symbol capture, where the macro has
internally shadowed, or captured, some symbols that users of this macro
might expect to be available when their expression is evaluated. There is a
solution here, though, and it’s called the gensym.

Approaching Hygiene with the Gensym
In order to avoid symbol capture issues like the one we just saw, Clojure gives
us a few tools, all related to the gensym function. gensym’s job is simple: it pro-

• Click HERE to purchase this book now. discuss

Approaching Hygiene with the Gensym • 11

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unhygienic_2.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unhygienic_3.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unhygienic_4.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/unhygienic_5.clj
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

duces a symbol with a unique name. The names will look funny because the
name needs to be unique for the application, but that’s OK because we never
need to type them into code:

advanced_mechanics/gensym_2.clj
user=> (gensym)
;=> G__671
user=> (gensym)
;=> G__674
user=> (gensym "xyz")
;=> xyz677
user=> (gensym "xyz")
;=> xyz680

As you can see, any given invocation of gensym gives a unique value back—so
if you want to refer to the same one twice, you’ll need to hold onto the value
with a let binding or something similar. These generated symbols (gensyms)
are extremely useful for macros, but because they’re normal data, you can
use them anywhere you’d use a symbol. In our make-adder macro earlier, we
can’t have user/y as a function argument, and we just saw that we don’t want
plain old y as a function argument, but we can use a gensym as a function
argument:

advanced_mechanics/gensym_3.clj
(defmacro make-adder [x]

(let [y (gensym)]
`(fn [~y] (+ ~x ~y))))

user=> y
100
user=> ((make-adder (+ y 3)) 5)
108

Now this version uses the value of y that we’d expect as users of this macro.
Notice that the let and gensym here are outside of the syntax-quote. It’s a bit
unfortunate that this is so verbose—let’s use the more concise and built-in
version. We’ll use a feature called the auto-gensym, which just looks like a
normal symbol with a pound sign (#) at the end, like a reverse hashtag:

advanced_mechanics/gensym_4.clj
(defmacro make-adder [x]

`(fn [y#] (+ ~x y#)))

user=> y
100
user=> ((make-adder (+ y 3)) 5)
108

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/gensym_2.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/gensym_3.clj
http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/gensym_4.clj
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

This, and not any of the previous ways we’ve done it, should be the tool you
reach for when you need to bind a name within a macro. There are several
other very similar cases of binding symbols to values where we also need to
use gensyms to construct macros safely:

advanced_mechanics/gensym_5.clj
(defmacro safe-math-expression? [expression]

`(try ~expression
true
(catch ArithmeticException e# false)))

;; clojure.core/and
(defmacro and

([] true)
([x] x)
([x & next]
`(let [and# ~x]

(if and# (and ~@next) and#))))

Bindings set up by special forms like let, letfn, and try’s catch clause have the
same requirement as function arguments, so you should typically use the
auto-gensym for these situations, too.

A lot of care has been taken in Clojure to make macro construction less error-
prone. These variable-capture problems, along with the ability to get gensyms
explicitly, have been around for a long time in Common Lisp, but it takes a
bit of voodoo (see Doug Hoyte’s Let Over Lambda [Hoy08]) to get something
like Clojure’s auto-gensym feature. It’s worth noting that if you wander into
the dark forests of nesting syntax-quotes, you (a) may never return, and (b)
may want to take a look at unify-gensyms from Zach Tellman’s Potemkin.3

Of course, anyone with a Scheme background is probably howling at this
point because they have a hygienic macro system that makes unintended
variable capture impossible. Allowing variable capture when we really, really
want it makes Clojure’s macro system technically more dangerous than
hygienic systems. By getting us most of the way there, Clojure gives us more
safety than Common Lisp’s macro system, along with the power to do variable
capture when it makes for an elegant solution.

3. https://github.com/ztellman/potemkin

• Click HERE to purchase this book now. discuss

Approaching Hygiene with the Gensym • 13

http://media.pragprog.com/titles/cjclojure/code/advanced_mechanics/gensym_5.clj
https://github.com/ztellman/potemkin
http://pragprog.com/titles/cjclojure
http://forums.pragprog.com/forums/cjclojure

