
Extracted from:

Metaprogramming Elixir
Write Less Code,

Get More Done
(and Have Fun!)

This PDF file contains pages extracted from Metaprogramming Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com




Metaprogramming Elixir
Write Less Code,

Get More Done
(and Have Fun!)

Chris McCord

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-041-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com


To my lovely wife, Jaclyn.





Building an Internationalization Library
Almost all user-facing applications are best served by an internationalization
layer where language snippets can be stored and referenced programmatically.
Let’s use code generation to produce an internationalization library in fewer
lines of code than you thought possible. This is the most advanced exercise
you’ve done so far, so let’s start by breaking down our implementation into
a rubric that you can use to attack complex metaprogramming problems.

Step 1: Plan Your Macro API
The first step of our Translator implementation is to plan the surface area of
our macro API. This is often called README Driven Development. It helps
tease out our library goals and figure out what macros we need to make them
happen. Our goal is to produce the following API. Save this file as i18n.exs.

advanced_code_gen/i18n.exs
defmodule I18n do

use Translator

locale "en",
flash: [
hello: "Hello %{first} %{last}!",
bye: "Bye, %{name}!"

],
users: [
title: "Users",

]

locale "fr",
flash: [
hello: "Salut %{first} %{last}!",
bye: "Au revoir, %{name}!"

],
users: [
title: "Utilisateurs",

]
end

Eventually we want to be able to call our module like this:

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
"Hello Chris Mccord!"

iex> I18n.t("fr", "flash.hello", first: "Chris", last: "McCord")
"Salut Chris McCord!"

iex> I18n.t("en", "users.title")
"Users"

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/i18n.exs
http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir


We’ll support use Translator to allow any module to have a dictionary of transla-
tions compiled directly as t/3 function definitions. At minimum, we need to
define a __using__ macro to wire up some imports and attributes, and a locale
macro to handle locale registrations. Head back over to your editor, and let’s
write some code.

Step 2: Implement a Skeleton Module with Metaprogramming Hooks
Our next step is to implement the skeleton of our Translator module by defining
the __using__, __before_compile__, and locale macros that we planned when fleshing
out the surface area of our API. The skeleton will simply set up the compile-
time hooks and module attribute registrations, but delegate the code genera-
tion bits to functions to be implemented later. Defining the metaprogramming
skeleton first will allow us to structure our module in a way that isolates the
advanced code generation to a function. This will keep our implementation
clear and reusable.

Create a translator.exs file with the following skeleton API:

advanced_code_gen/translator_step2.exs
defmodule Translator doLine 1

-

defmacro __using__(_options) do-

quote do-

Module.register_attribute __MODULE__, :locales, accumulate: true,5

persist: false-

import unquote(__MODULE__), only: [locale: 2]-

@before_compile unquote(__MODULE__)-

end-

end10

-

defmacro __before_compile__(env) do-

compile(Module.get_attribute(env.module, :locales))-

end-

15

defmacro locale(name, mappings) do-

quote bind_quoted: [name: name, mappings: mappings] do-

@locales {name, mappings}-

end-

end20

-

def compile(translations) do-

# TBD: Return AST for all translation function definitions-

end-

end25

Just like our accumulated @tests attribute in our Assertion module from the
code on page ?, we registered an accumulated @locales attribute on line 5.

• 8

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_step2.exs
http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir


Next, we wired up the __before_compile__ hook in our Translator.__using__ macro. On
line 13, we added a placeholder to delegate to a compile function to carry out
the code generation from our locale registrations, but we left the compile
implementation for a later step. Finally, we defined our locale macro that will
register a locale name and list of translations to be used by compile in our
__before_compile__ hook.

With the accumulated attribute registrations wired up, we have all the neces-
sary information to produce an AST of t/3 function definitions. If you like
recursion, you’re in for a treat. If not, pay attention and we’ll break it down.

Step 3: Generate Code from Your Accumulated Module Attributes
Let’s begin the bulk of our implementation by transforming the locale regis-
trations into function definitions within our compile placeholder from Step 2.
Our goal is to map our translations into a large AST of t/3 functions. We also
need to add catch-all clauses that return {:error, :no_translation}. This will handle
cases where no translation has been defined for the provided arguments.

Update your compile/1 function with the following code:

advanced_code_gen/translator_step3.exs
def compile(translations) doLine 1

translations_ast = for {locale, mappings} <- translations do-

deftranslations(locale, "", mappings)-

end-

5

quote do-

def t(locale, path, bindings \\ [])-

unquote(translations_ast)-

def t(_locale, _path, _bindings), do: {:error, :no_translation}-

end10

end-

-

defp deftranslations(locales, current_path, mappings) do-

# TBD: Return an AST of the t/3 function defs for the given locale-

end15

On line 1, we defined our compile function to carry out the locale code genera-
tion. We used a for comprehension to map the locales into an AST of function
definitions and stored the result in translations_ast for later injection. Next, we
stubbed a deftranslations call that we’ll implement later to define the t/3 functions.
Finally, we produced an AST for the caller on lines 6–10 by combining our
translations_ast with our catch-all functions.

Before we implement deftranslations, load your implementation in iex and let’s
check our progress:

• Click  HERE  to purchase this book now.  discuss

Building an Internationalization Library • 9

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_step3.exs
http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir


iex> c "translator.exs"
[Translator]

iex> c "i18n.exs"
[I18n]

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
{:error, :no_translation}

iex> I18n.t("en", "flash.hello")
{:error, :no_translation}

We’re on the right track. Any call to I18n.t returns {:error, :no_translation} because
we haven’t yet generated the functions for each locale. We’ve confirmed that
our catch-all t/3 definitions on line 9 were properly generated. Let’s continue
by implementing deftranslations to recursively walk our locales and define
translation functions.

Fill in your deftranslations function with this code:

advanced_code_gen/translator_step4.exs
defp deftranslations(locale, current_path, mappings) doLine 1

for {key, val} <- mappings do-

path = append_path(current_path, key)-

if Keyword.keyword?(val) do-

deftranslations(locale, path, val)5

else-

quote do-

def t(unquote(locale), unquote(path), bindings) do-

unquote(interpolate(val))-

end10

end-

end-

end-

end-

15

defp interpolate(string) do-

string # TBD interpolate bindings within string-

end-

-

defp append_path("", next), do: to_string(next)20

defp append_path(current, next), do: "#{current}.#{next}"-

We started by mapping over our translation key value pairs. Within our
comprehension on line 4, we first checked whether the value is a keyword
list. This would indicate a nested list of translation mappings, just like we
saw in our original high-level API.

• 10

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_step4.exs
http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir


flash: [
hello: "Hello %{first} %{last}!",
bye: "Bye, %{name}!"

],

The :flash key above points to a nested keyword list of translations. To handle
this, we would append "flash" to our accumulated current_path variable, which
we handled by an append_path helper function on lines 20–21. Then we continue
by recursively calling deftranslations until we encounter a string translation. We
used quote on line 7 to generate the t/3 function definitions for each string and
unquote to inject the proper current_path, such as "flash.hello", into the function
clause. Our t/3 body called a stubbed interpolate function that we’ll implement
in a moment to take care of placeholder interpolations.

This required only a handful of lines of code, but the recursion can be a little
mind-bending. Let’s take a break and see where we’re at in iex.

iex> c "translator.exs"
[Translator]

iex> c "i18n.exs"
[I18n]

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
"Hello %{first} %{last}!"

We’re nearly there. Our t/3 functions were correctly generated, and we just
need to handle variable interpolation to complete our library. You might be
wondering how we can keep track of all this code that we just generated. Like
always, Elixir has us covered. When you start generating large amounts of
code, it’s often necessary to see the final source that is being produced. For
this, you use Macro.to_string.

• Click  HERE  to purchase this book now.  discuss

Building an Internationalization Library • 11

http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir



