
Extracted from:

Metaprogramming Elixir
Write Less Code,

Get More Done
(and Have Fun!)

This PDF file contains pages extracted from Metaprogramming Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Metaprogramming Elixir
Write Less Code,

Get More Done
(and Have Fun!)

Chris McCord

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-041-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

To my lovely wife, Jaclyn.

It’s time to begin our journey to metaprogramming mastery. Ahead lies new
Elixir insights and new programming abilities. Perhaps you want to write
more productive libraries, build domain-specific languages, or optimize run-
time performance. Maybe you simply want to have fun exploring all that Elixir
has to offer. If this sounds like you, let’s get started!

By now, you’re familiar with Elixir; you’ve experimented with the language
and perhaps contributed to a library or two. We’re going to take it to the next
level by writing code that writes code with macros. Elixir macros are the game-
changer. They enable metaprogramming and make it a breeze to write powerful
programs.

Code that writes code might sound like a neat trick, but you’ll soon see how
it forms the basis of Elixir’s own construction. Macros open up unique possi-
bilities that simply aren’t possible in most languages. We can extend the
language with powerful first-class features, save time, and share functionality
in fun and productive ways. Used properly, metaprogramming lets us create
clear, concise programs that treat source code as building blocks instead of
as rote lines of instructions.

We’re going to start by covering everything you need to know about Elixir’s
metaprogramming system before we dive into our advanced exercises.

Let’s play.

The World Is Your Playground
Metaprogramming in Elixir is all about extensibility. Have you ever wished
your favorite language would adopt that one neat feature? If you’re lucky, it
might take years to happen. Often it never happens at all. In Elixir, you can
introduce new first-class features at will. Take the familiar while loop that you
find in most languages. It’s missing from Elixir, but you can imagine writing
one like this:

while Process.alive?(pid) do
send pid, {self, :ping}
receive do

{^pid, :pong} -> IO.puts "Got pong"
after 2000 -> break
end

end

In the next chapter, we make this while loop a reality. It doesn’t stop there,
though. With Elixir, we can define languages with the language, to express
all kinds of problems in a natural syntax. This is a valid Elixir program:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir

div do
h1 class: "title" do

text "Hello"
end
p do

text "Metaprogramming Elixir"
end

end
"<div><h1 class=\"title\">Hello</h1><p>Metaprogramming Elixir</p></div>"

Elixir makes things like this HTML domain-specific language possible. In fact,
we’ll create this in just a few chapters. You don’t have to understand how
these things work just yet—we’ll get to that. For now, just remember that
macros make all this possible. Code that writes code. Elixir pushes this idea
further than you’ve ever seen.

As with any playground, you need to start small and work your way up to
the advanced areas. Metaprogramming can be a difficult concept to grasp,
and its use requires a high level of care. Throughout this book, we’ll unveil
the mystery by going from simple exercises all the way through advanced
code-generation tutorials. Before we start writing code, we need to review the
two essential concepts of Elixir’s metaprogramming system and how they fit
together.

The Abstract Syntax Tree
To master metaprogramming, you first have to understand how Elixir code
is represented internally by the abstract syntax tree (AST). Most languages
you’ve worked with have an AST, but you’re typically not aware of it. When
your programs are compiled or interpreted, their source is transformed into
a tree structure before being turned into bytecode or machine code. This
process is usually masked away, and you never need to think about it.

José Valim, the creator of Elixir, chose to do something very different. He
exposed the AST in a form that can be represented by Elixir’s own data
structures and gave us a natural syntax to interact with it. Having the AST
accessible by normal Elixir code lets you do very powerful things because you
can operate at the level typically reserved only for compilers and language
designers. You interact with Elixir’s AST at every step of the metaprogramming
process, so let’s jump in and find out what it’s all about.

Metaprogramming in Elixir revolves around manipulating and inspecting
ASTs. You can access the AST representation of any Elixir expression by using
the quote macro. Code generation relies heavily on quote, and we’ll be using

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir

it throughout the book to carry out our exercises. Let’s use it to return the
AST representation of a couple of basic expressions.

Type the following into iex and let’s look at the results:

iex> quote do: 1 + 2
{:+, [context: Elixir, import: Kernel], [1, 2]}

iex> quote do: div(10, 2)
{:div, [context: Elixir, import: Kernel], [10, 2]}

We can see that the AST representation of 1 + 2 and div produced simple data
structures in Elixir’s own terms. Let that sink in for a moment. You can access
the representation of any code you write as an Elixir data structure. Quoting
expressions gives you something you’ve probably never seen from a language
before: the ability to peer into the internal representation of your code, within
a data structure you already know and understand. This lets you infer
meaning, optimize performance, or extend functionality while staying within
Elixir’s high-level syntax.

With full AST access, we can perform neat tricks during compilation. For
example, the Logger module in Elixir’s standard library can optimize logging
by completely removing the expressions from the AST. Let’s say we’re writing
to a file and would like to print the file path in development but ignore the
expression in production. We might write something like the following:

def write(path, contents) do
Logger.debug "Writing contents to file #{path}"
File.write!(path, contents)

end

In production, the Logger.debug expression would be completely removed from
the program. This is because we can interact with the AST during compilation
to skip this development-related call. Most languages would have to invoke
the debug function and waste CPU cycles checking for ignored log levels at
runtime, because their source code cannot interact with the underlying AST.

Finding out how Logger.debug is able to perform this feat brings us to the next
essential ingredient of the metaprogramming process: macros.

Macros
Macros are code that writes code. Their purpose in life is to interact with the
AST using Elixir’s high-level syntax. This is how Logger.debug can perform its
optimization tricks while appearing like normal Elixir code.

• Click HERE to purchase this book now. discuss

The World Is Your Playground • 3

http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir

Macros are used for everything from building Elixir’s standard library to
serving as core infrastructure of a web framework. In either case, the same
metaprogramming rules apply. You don’t have to make a decision between
complex, performant code or slower, elegant APIs. Elixir macros let you write
simple code with high performance. They turn you, the programmer, from
language consumer to language creator. No longer are you merely a user of
the language. You have access to all the tools and power that José used to
write the standard library. He opened the language up for your own extension.
Once you experience that level of power, it’s hard to go back.

You might think you’ve largely avoided macros until now, but they’ve been
hiding in plain sight all along. Consider this simple block of code:

defmodule Notifier do
def ping(pid) do

if Process.alive?(pid) do
Logger.debug "Sending ping!"
send pid, :ping

end
end

end

It might look unremarkable, but we’re looking right at four macros. Internally,
defmodule, def, if, and even Logger.debug are implemented as macros, like most
of Elixir’s top-level constructs. You can see for yourself by looking up the
documentation in iex:

iex> h if

defmacro if(condition, clauses)

Provides an if macro. This macro expects the first argument to be a condition
and the rest are keyword arguments.
...

You might be wondering what the advantage is of Elixir using macros for its
own constructs, since you get by fine in most languages without this structure.
The most powerful advantage is that macros allow you to extend the language
with your own keywords while using existing macros as building blocks.

The best way to think about metaprogramming in Elixir is to throw away the
notion of rigid keywords and opaque language internals. Elixir was designed
with extension in mind. The language is open to your exploration and custom
features. This is what makes metaprogramming in Elixir so pleasantly natural.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cmelixir
http://forums.pragprog.com/forums/cmelixir

