
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 3

Optimizing Data Access with ActiveRecord
You’ve heard the claim: “Rails doesn’t scale.” Like most generalizations, it’s
false, but that’s small comfort when you’re trying to figure out why this par-
ticular Rails application doesn’t scale.

And in general, it’s impossible to diagnose why a Rails application doesn’t
scale without performing a thorough investigation. It’s the Anna Karenina
principle: Every poorly performing system fails in its own unique way, having
gotten there following its own peculiar path to failure.

Still, some paths are more common than others, so you can usually make an
educated guess of why a system is performing poorly. Because typically, the
performance bottleneck is going to be the database, and most commonly,
certain data accesses executed by the Rails app.

This is completely normal. Nowadays, the vast majority of applications spend
a lot of time moving data around: exposing information to end-users or to
other applications via multiple interfaces, or just moving it from one data
cluster to another. Given this, you can see why the tool you use to interact
with the data is crucial. It will affect performance, reliability, and developer
experience.

Ruby on Rails has a specific philosophy on how to interact with data that
affects the application as a whole, including its performance and scalability.
In this chapter, we will explore what this philosophy entails, while learning
its quirks and the best way to use it to make our applications highly scalable.

Computer Science or Information Technology?

In 2017, The Economist published a story titled *The world’s most valuable resource
is no longer oil, but data*. The article argued that, by feeding the machine learning
models that have disrupted countless industries, data has become a new kind of fuel,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

one that powers the whole global economy. That may very well be true, but we software
engineers know that data -in particular, digitized data- has been a crucial component
of the vast majority of businesses long before the dawn of the AI revolution. In the
80s and 90s, when the field that is now commonly referred to as "computer science"
or "software engineering" started to rise as a force to be reckoned with, the most
commonly used term to refer to this new area was “IT”, Information Technology. While
the term in the US has become associated with the least glamorous part of software
engineering, to this day still in some languages a computer scientist is referred to
with a word that plainly links the discipline with information: "Informatik" in German
or "Informático” in Spanish are only two examples.

Referring to the systems we build as "information technology" may sound very old-
fashioned, but I do like the term. It reminds software engineers of what is the real
focus of our work: to give access to information. A very small percent of us work on
parts of the field that don’t involve the direct manipulation of data: the amount of
computer scientists that spent their days designing a new processor or even a new
programming language is way smaller than the ones that work on extending or
maintaining a set of APIs supported by an application written in Spring, Django, or
Rails.

Managing Data the Rails Way
There are many different kinds of abstractions that can be used on the data
layer; some with a lower level of abstraction and therefore “closer” to the way
the database works, others with a higher one. Ruby is a high-level Object
Oriented Programming (OOP) language, and therefore it makes sense that
the most popular data-mapping abstractions would match its high-level,
OOPish spirit. This type of data abstraction is called ORM; ORM standing for
Object-relational Mapping. In essence, ORMs map run-time objects to a set
of data; in a traditional RDBMS, each row would be mapped to a different
object, with a class corresponding to each table.

The most popular Ruby ORM, and the one used by Rails, is ActiveRecord. AR
is one of the best -if not the best- tool in the whole Ruby ecosystem, managing
to hit some sweet spot: capturing the magic that is commonly associated with
Rails while being expressive enough to feel somewhat transparent. AR offers
a layer of abstraction on top of the database that significantly simplifies access
to our data, additionally solving many of the issues related to interacting
directly with the database.

Nevertheless, the use of any ORM, even one as good as ActiveRecord, comes
with its own drawbacks. So let’s look at the most typical problems that arise
with the use of any ORM and see how to fix them. After that, we will move

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

deeper into the data layer of our Rails application, hitting the database itself:
We will learn how to analyze a given query to understand how the database
is executing it, and how to optimize queries to maximize performance.

Removing n+1s and Preloading Data
Of all the issues in database access, there is one that is particularly notorious.
Performance monitoring services give it special attention; it’s even used as a
common question in software engineering interviews. This problem is the
n+1. It is particularly important, if, as with Rails, we use an ORM. In this
section, you’ll learn what n+1s are and how to detect them, and you’ll learn
techniques to avoid them.

Meeting Your Enemy: the n+1
N+1s arise when trying to fetch an N amount of records in a specific and
highly inefficient way: instead of fetching all of them in one query, you go
about fetching them one by one, thereby ending up executing N queries.
Obviously, running SELECT * FROM movies WHERE ID IN (1, 3, 4, 5, 6, 7, 8, 9, 10) performs
significantly better than executing 10 separate queries. Despite being a very
well-known and even fairly obvious issue to the experienced developer, it’s
still one of the most frequent sources of problems in Rails applications, to
the point that some of the most popular performance monitoring platforms
(like New Relic) have specific mechanisms to detect it.

If you were writing your own queries, it’s unlikely that you would fall into this
particular pitfall since it would be obvious that the same query was being
rewritten over and over. The n+1 query problem is an issue in ORMs because
of that abstraction layer between database and application.

The companion application for this book has an n+1 problem, and in this
section, we are going to fix it. Take a look at the app now. The issue is in the
stores#show action. The n+1 is triggered by the following view, that you can find
in app/views/stores/show.slim:

table
- @films.each do |film|

tr
td = film.title
td = film.language.name

Looks harmless, doesn’t it? Unfortunately, it isn’t. The last line of this view
will run N queries, where N is the number of films owned by the store: this
means hundreds of unnecessary queries. There’s a good chance this won’t
be detected until the code hits production, as the datasets that are typically

• Click HERE to purchase this book now. discuss

Removing n+1s and Preloading Data • 5

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

used in testing and staging environments tend to be smaller. In mature sys-
tems, production data can be big enough for an n+1 to cause serious trouble,
including outages.

Next, you are going to find proof of the problem by calling that action in your
own instance of the application. Access the URL of stores/1/movies, so the view
we have just seen gets rendered. Check the log, and you will find something
similar to this:

Started GET "stores/1/movies" for ::1 at 2022-08-15 23:58:35 -0400

Film Load (100.6ms) SELECT "films".* FROM "films"
INNER JOIN "inventories" ON "films"."id" = "inventories"."film_id"
WHERE "inventories"."store_id" = $1 \[\["store_id", 1\]\]

↳ app/views/stores/show.html.slim:2

Language Load (1.2ms) SELECT "languages".* FROM "languages"
WHERE "languages"."id" = $1 LIMIT $2 \[\["id", 105\], \["LIMIT", 1\]\]

↳ app/views/stores/show.html.slim:5

Language Load (0.9ms) SELECT "languages".* FROM "languages"
WHERE "languages"."id" = $1 LIMIT $2 \[\["id", 106\], \["LIMIT", 1\]\]

↳ app/views/stores/show.html.slim:5

Language Load (0.2ms) SELECT "languages".* FROM "languages"
WHERE "languages"."id" = $1 LIMIT $2 \[\["id", 103\], \["LIMIT", 1\]\]

↳ app/views/stores/show.html.slim:5

Lots of very similar looking queries here...

Rendered stores/show.html.erb within layouts/application
(Duration: 3923.8ms | Allocations: 6551627)

Rendered layout layouts/application.html.erb
(Duration: 3945.4ms | Allocations: 6586873)

Completed 200 OK in 4054ms
(Views: 3777.1ms | ActiveRecord: 229.4ms | Allocations: 6601655)

Executing this extremely simple action took almost 4 seconds! Of that time,
the majority was spent in the view. Moreover, the n+1 is also causing havoc
in our memory usage. Check the “Allocations’’ part in the three last lines; we
are allocating over 6.5 million objects in memory every time we render this
view. This is bananas!

The log presented us with a very bleak situation, but also one that is fairly
typical of an n+1 problem. The log showed how our Rails application is exe-
cuting hundreds of different SELECT calls on the languages table, which is a
waste. N+1 is a problem that leaves a very recognizable pattern in the logs,
with a flood of extremely similar-looking SELECT statements, one after the
other. While there are more sophisticated ways to catch n+1s (many perfor-

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

mance monitoring systems auto detect them), in most cases a quick glance
at the log of a slow request will reveal the culprit association. Unfortunately,
complex applications can make n+1 detection difficult, but that’s when we
can use more sophisticated tools to catch n+1s. The Bullet gem1 has been
around for more than 10 years, and not only detects n+1s but also unneces-
sary eager loads and opportunities to use counter-caching. Prosopite
(https://github.com/charkost/prosopite) is a popular gem of very recent creation that
is able to detect n+1 in some edge cases that are not currently supported by
Bullet. Moreover, most APM systems (APM stands for Application Performance
Monitoring), like Scout or New Relic, feature n+1 autodetection.

As you see, there are plenty of options to catch those pesky n+1s. It’s not
surprising, because an n+1 is a bad problem to have in your application, one
that can become even worse in certain situations: for example, if the database
is in a different host than the Rails application, something fairly typical in
production environments. In this case, each query will imply another trip
around the network, increasing the gravity of the problem. N+1s can become
even worse in certain situations: for example, if the database is in a different
host than the Rails application, something fairly typical in production envi-
ronments. In this case, each query will imply another trip around the network,
increasing the gravity of the problem.

Fortunately, fixing n+1s is extremely simple thanks to ActiveRecord.

1. https://github.com/flyerhzm/bullet

• Click HERE to purchase this book now. discuss

Removing n+1s and Preloading Data • 7

https://github.com/charkost/prosopite
https://github.com/flyerhzm/bullet
http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

