
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Using Write-through Caching
One of the most important mottos of this book, one that you will read again
and again repeated on these pages, is that performance improvements many
times are a matter of trade-offs. The most common trade-off that performance
engineers make on web applications is writing time vs. reading time; in other
words, make writing slower so reading is faster. This typically makes sense
in most web applications, because reading is way more common than writing.

The following image summarizes write-through caching:

writeData()
writeData()

User
Rails

Application
Cache
Layer

Database

writeDerivatedDenormalizedData()

getAllData()

getDerivatedDenormalizedData()

HIT

Response

getData()

Data

You can implement write-through caching in our application easily. In this
case, the ActiveModel callbacks will be extremely useful, and in particular,
you can make use of after_save. Go and modify the Film model so that every time
a film is modified, the application updates the cache at the same time.
Something like the following:

class Film < ApplicationRecord
after_save :write_cache

[...]

private

def write_cache

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

Updates the cache
Api::V1::FilmPresenter.new(self).to_json

end
end

The call to Api::V1::FilmPresenter.new(film).to_json works because, as you remember,
the to_json method renews the cache if it’s expired.

This change has renewed the “smaller doll” in our Russian doll caching. Now
change the code so the application also updates the cache for the whole
/api/v1/films response. You can do that by modifying the ActiveModel callback
you just created.

class Film < ApplicationRecord

[...]

def write_cache
Rails.cache.write("/api/v1/films",
Film.all.map { |film| Api::V1::FilmPresenter.new(film).to_json }.append(

expiration_key: "#{Film.count}-#{updated_at}"
)

)

true
end

end

The previous code replaces the individual update of the cache of one particular
for a full refresh of the cache of the endpoint. With this, any access to api/v1/films
will always result in a cache hit, with obvious performance advantages. The
next and final step would be to remove the check of the expiration key: it is
not needed anymore. With write-through caching, reading can be an O(1)
operation.

Still, write-through caching as implemented here has some significant draw-
backs. Let’s look at them.

First of all, updating a record has become significantly more expensive com-
putationally, and this means it’s slower. One way to improve this is to make
the call to write_cache asynchronous. Nevertheless, taking this step implies a
new set of trade-offs that we will explore together later in the book.

The fact that write-through caching slows down the write is an important
issue, but in my opinion, the main drawback of this technique is its impact
on the complexity of the application. As a matter of fact, you just significantly
increased the complexity of the application. The Film model is now entangled
with our implementation of the response for a particular endpoint (api/v1/films).
Of course, there are ways to make this cleaner: the example you just coded

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

is basically a proof of concept to show the power of write-through caching.
All this can refactored quite deeply: even from a design perspective, one can
separate the updating of the database from the writing of the cache by -again-
making it asynchronous. Nevertheless, complexity has increased, and this
will just get worse as our application gets more endpoints.

Still, there is more to caching and to write-through caching in particular than
a sheer storing of an API response. Next, you will explore a different way of
using it: fan-out writing.

Implementing Fan-out Writing
Yes, our application may sound outdated, being a video store management
system, but don’t think we are stuck in the 90s. We have implemented a
social network on top of it! Our customers can follow each other, Twitter-style.
But wait, it gets even cooler than that: customers have a public timeline that
shows the latest films rented by the people they follow! You can see it calling
api/v1/customers/#{id}/timeline.

Unfortunately, the queries that our application needs to run to fetch the
timeline aren’t pretty. Let’s call the endpoint and check the logs. We will take
a look at Matz timeline: appropriately for the creator of Ruby, he is the cus-
tomer with id 1. Hit api/v1/customers/1/timeline and you will see this DB query:

Rental Load (43.6ms) SELECT `rentals`.* FROM `rentals`
WHERE `rentals`.`customer_id` IN (2, 3, 4, 5, 6, 7, 8,

9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
...)
ORDER BY `rentals`.`created_at` DESC LIMIT 10

The thing is that Matz is nice, so he is following thousands of users in our
application! This makes for a pretty complex query. To build the timeline, the
application needs to order the rentals by created_at but the issue here is that
the customer_id value is arbitrary. Our database will need to pick all the rentals
of the customers that Matz is following and then order them. Even if the
number of rentals finally fetched is limited, the database still needs to operate
with thousands of rentals to select the latest ones. One quick look at the
controller action will show that the ActiveRecord query seems written well
enough:

class Api::V1::CustomersController < ApplicationController
[...]

• Click HERE to purchase this book now. discuss

Implementing Fan-out Writing • 5

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

def timeline
customer = Customer.find(params[:customer_id])
rentals = Rental
.where(customer_id: customer.followings.pluck(:followed_id))
.order(created_at: :desc).limit(10)
.includes(inventory: :film)

render json: rentals.map do |rental|
Api::V1::RentalPresenter.new(rental).to_json

end
end

end

Not much to optimize here. There is a way to eliminate the Customer.find call
(can you implement it?), but that’s small potatoes compared to the crucial
method here: the Rental.where. In summary, not much you can do here to make
this faster refining the way the application accesses the database.

The suggested solution here is not changing how the query runs but rather
using write-through caching instead. However, in this particular caching the
full response would be ill-advised. Imagine what would happen if one of the
customers was very popular, being followed by millions of other customers.
The application would cache exactly the same JSON Rental objects millions
of times. Such a waste! The alternative is for each customer to store the ids
of the rentals of the customers she is following. It would be a bit like having
a mailbox: every time that a new Rental object is created, the application
would store the id of this new rental as the “mailbox” of all the customers
following the creator of that rental. Implementing this is very straightforward:

class Rental < ApplicationRecord
after_create :cache_for_followers

[...]

private

def cache_for_followers
customer.followers.each do |follower|
timeline = Rails.cache.read(follower.timeline_cache_key) || []

Rails.cache.write(
follower.timeline_cache_key, timeline.unshift(id)[0..9]

)
end

end
end

class Customer < ApplicationRecord
[...]

def timeline_cache_key
@timeline_cache_key ||= "rental-timeline-#{id}"

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

end
end

This implementation seems sane, but it’s not thread-safe: if two Rails processes
would concurrently try to add two different rentals to a user’s timeline, chances
are that one of them would be accidentally wiped out. To fix this, you will
need a storage system that would allow us to append values to an array in
an atomic way. Fortunately, you have quite a few options, including Redis,
one of the most popular key-value stores in the market. We will comment on
this further later in this chapter, in the section dedicated to choosing a storage
system to use for caching purposes.

Thanks to caching on the write, now the query needed to fetch the timeline
is extremely simple. You just need to get the ids of the Rentals that need to
be presented from our cached timeline and load them from the database using
the primary key, the id. Fast and simple!

class Api::V1::CustomersController < ApplicationController
[...]

def timeline
customer = Customer.find(params[:customer_id])
rentals = Rental.where(id: Rails.cache.read(customer.timeline_cache_key))
render json: rentals.map do |rental|
Api::V1::RentalPresenter.new(rental).to_json

end
end

end

This example, though simplified, illustrates how real systems scale. For
instance, when I was the CTO (aka solo engineer) of Playfulbet, my first start-
up, we had to scale so the application worked for hundreds of thousands of
users, and with very few resources. The application had a timeline, and I used
fan-out writing to make it scale. It’s also how Twitter6 worked, at least until
2012, when the company still used Rails in its stack. Currently, at my job at
Zendesk (another big company using Rails!) a similar technique powers our
views, one critical feature of our Support product. Fan-out writing is a very
useful design pattern that can power many complex operations.

Still, fanout writing has its own drawbacks. The most obvious is yet another
increase in the complexity of the application. A most subtle and dangerous
is that the increased computational cost of the write may be too expensive in
certain specific cases. For example, some social networks7 have what is called

6. https://www.infoq.com/presentations/Twitter-Timeline-Scalability/
7. https://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/

• Click HERE to purchase this book now. discuss

Implementing Fan-out Writing • 7

https://www.infoq.com/presentations/Twitter-Timeline-Scalability/
https://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/
http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

the “Justin Bieber problem”: each post by a user with many followers could
become a problem for the infrastructure. At a given point in 2010, Justin
Bieber was using 3% of Twitter resources at any moment; with the rumor
being that there were full servers dedicated to his account.8 A way around
this would be to introduce mixed fanout, so the vast majority of tweets use
fanout writing, but keep the ones written by celebrities exempt. The timeline
of a user would be constructed by using her timeline “bucket” created by
fanout writing and mixing it with the tweets of the celebrities she follows,
which will be fetched directly from the database -this is called fanout reading-
. Nevertheless, despite these inconveniences, fanout writing can considerably
speed up applications that operate at scale.

8. https://gizmodo.com/justin-bieber-has-dedicated-servers-at-twitter-5632095

• 8

• Click HERE to purchase this book now. discuss

https://gizmodo.com/justin-bieber-has-dedicated-servers-at-twitter-5632095
http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

