
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introducing Horizontal Sharding
If this is the first time that you have read about sharding, you may be won-
dering how it works in practice. What is the exact strategy used to define the
data held by each one of those shards? How can you implement sharding
without utterly breaking the functionality of your application?

Vertical sharding

Yes, the term "horizontal sharding" implies the existence of "vertical sharding".

In computing, a cache is a hardware or software component that stores data so that future
requests for that data can be served faster; the data stored in a cache might be the result
of an earlier computation or a copy of data stored elsewhere. A cache hit occurs when the
requested data can be found in a cache, while a cache miss occurs when it cannot. Cache
hits are served by reading data from the cache, which is faster than recomputing a result
or reading from a slower data store; thus, the more requests that can be served from the
cache, the faster the system performs. \[...\] To be cost-effective and to enable efficient
use of data, caches must be relatively small.

The thing is that there is a very common scenario in modern web applications,
particularly in B2B services: datasets in which the whole data “hangs” on the
account. For example, when a company opens an account in a, say, a cloud-
based SaaS to manage their human resources, they don’t expect their data
to interact in any way with the data of other accounts. In fact, it would create
a huge issue if there was any kind of data leak between accounts! In products
like the one we are commenting on -an HR managing service- the vast
majority of the data can be easily partitioned with no feature loss. In this
case, it would be acceptable from a product perspective -even somehow ideal-
if each account would have its own totally isolated database.

Let’s take our movie business as an example. Fortunately, the data model
you have in your hands is perfect for applying some sharding: the key you
want to use to generate the shards is store_id. We are going to use this oppor-
tunity to add a new feature to our application: we are going to introduce
audits. Every time that something of relevance to the store occurs, we are
going to create an object and store it. This is how it could look:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

Audits
id store_id

1 2

2 43

3 5

4 2

7 10

8 12

9 15

Shard 1 Shard 2 Shard 3

Audits
id store_id

8 12

9 15

Audits
id store_id

2 43

7 10

Audits
id store_id

1 2

3 5

4 2

What you have just seen described is an ideal sharding scenario. So ideal,
that it rarely happens in reality, even in use cases in which data sharding is
commonly used. The thing is that, even if all the data introduced by the
customer can be completely sharded, in all probability there will be data that
is shared. The most obvious example is that all instances of the application
will probably need to connect to a complete accounts table that at least allows
them to know the shard assigned to a given account, but there are many
others. Fortunately, this kind of “global” data tends not to suffer volume
issues in the same way that customer-associated data does, and therefore
you can replicate it across all shards without a problem.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

Shard 1 Shard 2 Shard 3

Audits
id store_id

1 2

2 43

3 5

4 2

7 10

8 12

9 15

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

Audits
id store_id

8 12

9 15

Audits
id store_id

2 43

7 10

Audits
id store_id

1 2

3 5

4 2

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

After this explanation, you may think that sharding is an obvious choice,
almost something that you should implement preemptively to all your appli-
cations. That’s not the case. The reality of the tech world is not the massive
scale that we are discussing here: it’s significantly smaller volumes of data.
Moreover, sharding notably increases complexity, and complexity is the silent
killer of tech businesses. Maybe that’s why Rails didn’t support sharding out
of the box until fairly recently.

• Click HERE to purchase this book now. discuss

• 5

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

