
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introduction
This book has a superhero origin story. Let me tell it to you.

The Origin Story
I started writing Ruby in the late 2000s, while I was still in college. Those
days, I was surrounded by fellow students who were becoming entrepreneurs,
and soon I decided to try my luck. In 2012, I became one of the co-founders
and the Chief Technical Officer of PlayfulGaming, a company that supported
only one product: a game called Playfulbet. Playfulbet quickly became very
popular. Within two years, the game had over half a million registered users.

This was a huge challenge for a 25-year-old CTO – especially considering that
I was also the only engineer and the only technical person on the team. I took
care of everything: from infra to front-end, from the Android app to database
management, from writing Ruby wrappers around third-party APIs to the
management of the iOS account for our iPhone app… which was also created
by me.

All this was a titanic effort for one developer, only made possible by Ruby on
Rails. Our web app had an extremely simple front-end and the mobile apps
just rendered the mobile version of the web app. In this way, I was able to
spend most of my time coding Ruby, the language that prioritizes developer
productivity and happiness. And I was reasonably happy… and also crazily
productive.

Still, Playfulbet suffered from very intense growing pains. Make that: we had
a lot of trouble making it scale. The game became unplayable at peak hours,
when the Rails app was just unable to respond to so many simultaneous
requests. I learned a lot during that period, and many of the techniques that
I will share with you in this book were used to keep Playfulbet afloat during
those years of rapid growth. Still, our growth was just too spectacular: my
Rails application couldn’t manage it. This was the beginning of my fascination

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

with scalability problems, and the reason why I decided to write this book.
Was it possible that Rails just didn’t scale?

We Need to Talk about the Rails Learning Curve
The idea that “Rails does not scale” is, unfortunately, quite extended. A couple
of months ago, while talking with the founder of a start-up about this book,
he told me “The only thing I have heard about Rails is that it doesn’t scale!”.
That this idea is around obviously does not make anybody happy in the Rails
(and by extension, Ruby) community. But is it a fair assessment?

In short, my answer is no, it’s not a fair assessment. Benchmarks1 show that
Rails does basically the same as similar technologies, like Django (Python) or
Laravel (PHP). Rails does scale. In truth, Rails is a battle-tested technology
that has proven itself in enabling the growth of companies with planetary-
scale needs, like Shopify, GitHub, and Zendesk.

So if Rails has the demostrable capacity of scaling, where does the myth of
“Rails does not scale” comes from? I have a theory.

Rails famously follows the design paradigm of “convention over configuration”.
With it, Rails reduces the cognitive workload in projects by providing sensible
defaults. This reduces complexity and helps increase productivity. Other
concepts embraced by Rails nudge in the same direction: “batteries included”
means that Rails developers have access to many tools that bring a rich set
of functionalities to their applications with a very low implementation and/or
integration cost. On top of that, there is the famous (or infamous, depending
on who you ask) Rails “magic”: the fact that Rails sets a series of implicit
behaviors, conventions, and dependencies that increase development efficiency
by abstracting away much of the complexity – and they may also prove obscure
when the time comes to debug or when you need to go against the implicit
convention.

While other successful web frameworks have also followed this path, Rails
has been the most firmly committed to it, and also the most successful. This
success meant that many inexperienced developers (like I was when I worked
in my start-up) were able to get very far – thanks to the Rails “magic”, sup-
ported by Rails extremely smooth learning curve.

Until the time arrived to scale the application. At a talk in RailsConf 20222,
I joked that what the community seemed to be asking for is active_scale, a gem

1. https://www.techempower.com/benchmarks/#hw=ph&test=composite§ion=data-r22
2. https://www.youtube.com/watch?v=mJw3al4Ms2o

Introduction • iv

• Click HERE to purchase this book now. discuss

https://www.techempower.com/benchmarks/#hw=ph&test=composite§ion=data-r22
https://www.youtube.com/watch?v=mJw3al4Ms2o
http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

that would do the whole job for them. You just create a new initializer file and
write:

ActiveScale::Rails.scale!(:sufficient_but_not_too_much)

And that’s it. You can go back to writing business logic!

Regrettably, active_scale does not exist. It can’t exist. There are multiple reasons
for this: a lot of the scaling work is done outside of the scope of the Rails
application itself, like database indexing and product design. Moreover,
scaling is also highly context-specific, and the performance bottlenecks vary.

Fortunately, while it’s true that we can’t create active_scale there are a number
of techniques that can be used to scale web applications, practices that are
completely applicable to Rails applications.

Techniques for a Rails Renaissance
Getting back to my story, I eventually realized that the best way of learning
how to scale would be to join a company that had managed to do it. That’s
why I joined Zendesk. It was a dramatic change moving from an organization
in which I was the only engineer to one that has a product development team
comprising over a thousand professionals.

This proved to be a smarter plan than I even realized. I now believe that an
engineer needs three things to develop into a great professional. The first is
a strong sense of ownership and responsibility, which you will definitely get
working in a start-up. The second is being mentored by experts in different
areas, which is something that can best be achieved by working in a big
company. The third is time. You can be a great coder very early in your career;
but you can’t be an effective engineering leader without experience.

In my opinion, many debates in software architecture tend to be highly
dependent on the broader social and economic context: Only experience can
show you that there is not a general best solution, but only a best solution
for these particular circumstances. A successful engineering leader needs
not only a broad knowledge of the options to satisfy the requirements but
also wisdom to separate the wheat from the chaff and pick the solution that
will best fit the needs of the organization.

In the last 15 years, we have seen a great rise in the popularity of microservice
architectures: while they have obvious upsides for scalability, flexibility, and
autonomy, I cannot help thinking that their popularity has benefitted from
the financial environment of the last decade. In other words, it might be,
partly, a zero-interest rate phenomenon. Having so much money injected into

• Click HERE to purchase this book now. discuss

Techniques for a Rails Renaissance • v

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

tech allowed the hiring of very big teams for comparatively simple products,
which helped to cover some of the trade-offs of microservices, like the higher
complexity and increased cognitive load needed to manage them. If we are
headed into more frugal times, this will have to change.

Still, requirements and expectations in 2024 are different from 2012. Modern
applications are expected to be able to serve more users and have better
performance than they had 12 years ago. If we are going to have a Rails
renaissance, we are going to have to write Rails applications in which perfor-
mance is a first-class feature from day one. Hopefully, this book can help.

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

