
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Improving your Response Time with Asynchronous
Processing
Feature bloat is a common fate for applications that have been around for a
while; this may be even more common for Rails applications, given the speed
of development that Rails provides to its users. Even if the product has not
added new features for the customers, it’s probable that the application
complexity has increased in other ways. Take the following diagram as an
example: years ago you had a simple function (writeData()) that performed
something simple (writeA()). Time passed, and complexity piled up: now the
same action does writeB(), writeC(), writeD(), writeE(), and writeF(). All those actions
can be whatever: recalculating statistics, emitting events, generating derived
data, sending emails, or anything that makes sense in the domain of the
application.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

writeData()
writeA()

User
Rails

Application
Database

writeB()

Response

writeC()

writeD()

writeE()

writeF()

From a product perspective this may be fine and dandy, but from a perfor-
mance perspective… it may not. Of course, all those new actions could be
very important, and they may be also extremely optimized so they are executed
as fast as possible. Nevertheless, writeData() is way slower than it used to be
when it only executed writeA(). This can be particularly problematic if it ends
up affecting the user experience (think a slow endpoint).

What to do? Well, even if you have decided that everything that this function
does is completely necessary, do you really need it to happen synchronously
with its primary action? Could you perform writeB(), writeC(), etcetera asyn-
chronously? Of course, you may decide that the application needs synchronic-
ity. For example, you may decide that emitting a Kafka event needs to be
performed in the SQL transaction of a database change, so that change can
be canceled if the event creation fails. However, making some actions asyn-
chronous can make your function look like this:

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

writeData()
writeA()

User
Rails

Application
Database

Response

writeC()

writeD()

writeE()

writeF()

Async
Processor

WriteAsync()
writeB()

In this section, we will be moving part of the logic of an endpoint to an asyn-
chronous processor.

Before moving on to the implementation, I would like to share with you my
experience breaking down actions into multiple asynchronous processes. In
my opinion, software engineers start their career with a very idealized view
of how an application should run: and this view includes total synchronicity.
As one gets experience, the necessity of accepting certain trade-offs becomes
apparent. Still, one concern remains: how will users react to the effects of
their actions becoming asynchronous? My advice is to be deeply empathic to
your users, but also to respect their intelligence. Your users will expect the
primary change that they executed to take place immediately (at least to them;
“read your own write” can be a solution here), but the effects of their actions
can happen asynchronously. Having clear targets (this effect will take place
in under a second 99.99% of the time) is important. Having a clear product
direction is even more important: designing a system asynchronous from the
start is way easier than transitioning a synchronous system to being asyn-
chronous.

Processing Asynchronously with Background Jobs
Rails 4.2 included a new piece of the Active ecosystem: ActiveJob.

For engineers who had been using Rails for a while, this action by the Rails
core team was a nod to the reality that many, many Rails teams around the

• Click HERE to purchase this book now. discuss

Improving your Response Time with Asynchronous Processing • 5

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

world already were using asynchronous jobs. Maybe this is why ActiveJob is
agnostic on the precise job runner you use. From the Rails documentation7:

Active Job is a framework for declaring jobs and making them run on a variety
of queuing backends. The main point is to ensure that all Rails apps will have a
job infrastructure in place. We can then have framework features and other gems
built on top of that, without having to worry about API differences between various
job runners such as Delayed Job and Resque. Picking your queuing backend
becomes more of an operational concern, then. And you’ll be able to switch between
them without having to rewrite your jobs.

In other words, ActiveModel offers us a common API for background jobs:
still, the architecture behind ActiveJob is completely customizable. There are
some quite popular gems at your disposal. For example, resque8, Delayed::Job9,
or bunny10. Still, the most used and the one that we are going to employ in this
exercise is sidekiq11.

7. https://guides.rubyonrails.org/active_job_basics.html
8. https://github.com/resque/resque
9. https://github.com/collectiveidea/delayed_job
10. https://github.com/ruby-amqp/bunny
11. https://github.com/sidekiq/sidekiq

• 6

• Click HERE to purchase this book now. discuss

https://guides.rubyonrails.org/active_job_basics.html
https://github.com/resque/resque
https://github.com/collectiveidea/delayed_job
https://github.com/ruby-amqp/bunny
https://github.com/sidekiq/sidekiq
http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

