
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Using Traces
The previous dashboards, based on default metrics on request latency will
be very useful to understand the “macro” tendencies of your application, even
the tendencies in a particular endpoint. However, sometimes it’s necessary
to “zoom in”: traces will be the tool to use when you need to understand the
details of what is happening with certain requests. You can think of a trace
as a kind of “breadcrumb trail” left by each request in their journey through
your application. Every time a request hits your application, markers will be
generated for the steps taken. With them, a complete storyline of the life of
the request in your application can be generated. Using traces, you will be
able to investigate slowdowns by examining closely each of the steps that a
slow request has followed, to understand what happened and what needs to
be optimized.

You can access traces in Datadog in multiple ways. If you are following from
the previous section, you can just scroll down in the “Resource Page” for
Api::V1::FilmsController#index: the Traces section is at the bottom. Here you can
already see information about each request that hit the action. To see even
more, click on the “View all in Trace Explorer” link. You can also access the
Trace Explorer in the left sidebar, under APM.

First of all, note that at the top of the page, the Trace Explorer is marking as
if you were filtering by “Spans”. While a trace is the entire journey of a request,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

a span is an individual unit within the trace, typically representing a single
operation. A span can contain other spans, so you can “mark” different parts
of the request in your application with the target of monitoring them better.

At the top of the Trace Explorer, you will see a search bar showing the current
filters you are applying. These should be:

• env:development. Right now you are running the application in development
mode.

• operation_name:rack_request. The operation being monitored: in this case, the
request that is being processed by Rack.

• service:rails-performance-book. The service that is being monitored.
• resource_name:"Api::V1::FilmsController#index". The resource that we are filtering

by: in this case, it’s a combination of the controller (Api::V1::FilmsController)
and the action(#index).

On the left side of the screen, you will see a list of facets. With those facets,
you can change the filters currently applied to your trace search. For example,
if you want to check your slowest requests, you can change the “Duration”
filter to only see the ones that took over 100ms, for example. You can also
check a different resource by changing the selection under “Resource”: try to
check the traces for CustomersController#show.

Now, let’s dive deeper into one particular trace. Check again the requests to
Api::V1::FilmsController#index. On the right side, you will get a list of requests that
hit that particular action. Click on one of them, and a new panel full of
information for that specific request will be displayed: feel free to click on
“Open Full Page” to check this more comfortably.

The first section is a flame graph. It represents the execution path of the
request across multiple services (like MySQL or the cache layer). If you hover
over some of the horizontal bars, you will see more granular information on
all the steps executed during the request. For example, in the trace above,
there was a check on a feature flag in DB (SELECT ... FROM flipper_features ...) that

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

took 3.8ms. Later, there was a query on the films table that took 922
microseconds. Further down the line, there is a set of accesses to active_support-
cache; each one took around 70 microseconds: those were accesses to fetch
the cached JSONs corresponding to each object returned by the requests.
Finally, there was a kind of big query at the end of the flame graph: SELECT
COUNT (*) FROM films taking 6.33ms. If I wanted to optimize this endpoint further,
I would take a look at improving that. Apart from “Flame Graph”, DataDog
offers you other ways to visualize the spans that make up the trace: “Span
List” can also be quite useful to see data in a less visual, but more textual,
way.

Under the flame graph (or the span list), you can see a list of information
corresponding to the trace. In particular, the most interesting can be the list
under “Span Attributes”. You can see all kinds of data. Under http, you will
see the method (GET), the status code of the response (200), and the path
(api/v1/films). There is more low-level information in attributes, like the process
ID, the language of the service, etc. All this is automatically generated by
Datadog’s integration, and sometimes, it can be insufficient to properly
understand what is happening in your application. Fortunately, you can
customize traces further.

Customizing Traces

Traces and spans are highly customizable, so you can get exactly the infor-
mation you need. In this section, you are going to customize the monitoring
by adding two new elements:

• A new span attribute that will be added every time that a user hits a
request associated with a store, like (api/v1/stores/STORE_ID/audits). Adding this
attribute can be crucial: if the application you have developed in this book
is like a B2B, the store would be something like our customer. Adding
the store ID as an attribute will allow you to filter requests by customer,
which is basic to diagnose issues happening in one specific account.

• A new service that will track the processes performed by the presenter
layer. This is a way to separate the work done by the database from the

• Click HERE to purchase this book now. discuss

• 5

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

one done by parts of our Rails application. Moreover, it’s a clean example
of how to further segregate the tasks executed by the application, so it
does not become an untraceable blob.

Let’s start by adding a new attribute to the current span. To do so, I recom-
mend you create a new middleware in your application. If you did the “Discov-
ering Sharding” section in the “Thinking Architecture for Performance”
chapter, you can inspire yourself with the ShardSwitcher middleware you created
then. That middleware could look something like this:

module Middleware
class DatadogMiddleware

def initialize(app)
@app = app

end

def call(env)
request = Rack::Request.new(env)
request.path =~ /.*stores\/(\d+).*/
store_id = $1

Datadog::Tracing.active_span.set_tag("store_id", store_id) if store_id
@app.call(env)

end
end

end

The key methods here are the call to Datadog::Tracing.active_span, which returns
the current span, and the call to set_tag(key, value) which sets the tag. Remember
also to add the middleware to your application configuration in config/applica-
tion.rb:

require_relative '../app/middleware/shard_switcher'
module Moviestore

class Application < Rails::Application
[...]

config.middleware.use Middleware::DatadogMiddleware

[...]
end

end

With this done, restart your Rails application and test it out. Restart the rake
seed_datadog task, or hit by yourself an endpoint with a store_id parameter,
like api/v1/stores/1 or api/v1/stores/1/audits. Now go back to the Trace Explorer in
your Datadog instance and check a trace for resources associated with a
store: Api::V1::StoresController#show or Api::V1::AuditsController#index. Check the Span
Attributes. At the bottom, you will see your new attribute, store_id. If you hover

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

over it, an options menu should appear, and you should be able to “Filter by
&store_id:X”, selecting only traces associated with the desired store.

Next, you will create a new service to encapsulate all the presenter logic.
Creating a new service in DataDog is simple: you just need to add new traces
specifying this new service (as a string parameter). To create a new span, you
will need to call the method Datadog::Tracing.trace(trace_name) and pass the logic
that makes up the trace as a block. Let’s apply this to the presentation layer.
Fortunately, all the presentation classes share the same parent class:
Api::V1::Presenter. Moreover, this class has only one method (beyond initialize):
to_json. This simplifies our task a lot: you just need to wrap all the logic around
that method with a new trace. This is a possible solution:

app/presenter/api/v1/presenter.rb

class Api::V1::Presenter
[...]

def to_json(exclude: [])
return nil unless resource
Datadog::Tracing.trace('presenter.to_json',
service: 'presentation-layer', resource: resource&.class&.to_s) do

[...]

end
end

end

Note that I also added the class of the object presented as the resource of the
trace. Once you have created this new trace, hit a few times an endpoint that
uses the Presenter class (for example, Api::V1::FilmsController#index). Check the
span list of any of its traces. You shall see a new service, presentation-layer.

• Click HERE to purchase this book now. discuss

• 7

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

The new service is also available in the Service Catalog and all other DataDog
features. Remember that you can learn more about how to customize your
traces by reading DataDog’s documentation for its Ruby integration.5

5. https://docs.datadoghq.com/tracing/trace_collection/automatic_instrumentation/dd_libraries/ruby/#integration-
instrumentation

• 8

• Click HERE to purchase this book now. discuss

https://docs.datadoghq.com/tracing/trace_collection/automatic_instrumentation/dd_libraries/ruby/#integration-instrumentation
https://docs.datadoghq.com/tracing/trace_collection/automatic_instrumentation/dd_libraries/ruby/#integration-instrumentation
http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

