
Extracted from:

Programming Crystal
Create High-Performance, Safe, Concurrent Apps

This PDF file contains pages extracted from Programming Crystal, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Crystal
Create High-Performance, Safe, Concurrent Apps

Ivo Balbaert
Simon St. Laurent

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Nancy Rapoport
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-286-2
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Structuring a Class
In the previous section, and in Organizing Code in Classes and Modules, on
page ?, you saw a simple Mineral class. Here’s the class code by itself without
any additional logic:

class Mineral
getter name : String
getter hardness : Float64
getter crystal_struct : String

def initialize(@name, @hardness, @crystal_struct) # constructor
end

end

This class has three read-only instance variables: name, hardness, and crystal_struct.
Giving them a type is imposed by the Crystal compiler. But you can also do
this in the initialize method:

classes_and_structs/classes.cr
class Mineral

getter name, hardness, crystal_struct

def initialize(@name : String,
@hardness : Float64,
@crystal_struct : String)

end
end

Default values can be assigned like this:

def initialize(@name : String = "unknown", ...)
end

Some people use symbols like :hardness for the property name, but it isn’t
required. A property without a type must have a default value. Or you could
give it a value in initialize (try it!). You don’t need to define variables at the start
of the class.

The new method creates a Mineral object:

min1 = Mineral.new("gold", 1.0, "cubic")
min1 # => #<Mineral:0x271cf00 @crystal_struct="cubic",
=> @hardness=1.0, @name="gold">
min1.object_id # => 41012992 == 0x271cf00
typeof(min1) # => Mineral # compile-time type
min1.class # => Mineral # run-time type
Mineral.class # => Class # all classes have type Class

new is a class method that’s created automatically for every class. It allocates
memory, calls initialize, and then returns the newly created object. An object

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/crystal/code/classes_and_structs/classes.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

is created on the heap and it has an object_id: its memory address. When it
gets a new name or when it’s passed to a method, only the reference is passed.
This means the object is changed when it’s changed in the method.

When you’re not sure which types your initialize method will accept, you can
also use generic types like T, as in this class Mineralg:

classes_and_structs/classes.cr
class Mineralg(T)

getter name

def initialize(@name : T)
end

end

min = Mineralg.new("gold")
min2 = Mineralg.new(42)
min3 = Mineralg(String).new(42)

=> Error: no overload matches 'Mineralg(String).new' with type Int32

When naming instance variables, prefix them with @. For class variables, use
@@, like the @@planet our mineral species comes from. All objects built using
this class will share this variable, and its value will be the same to all of them.
(However, subclasses, which you’ll see in the next section, all get their own
copy with the value shared across the subclass.)

To name properties that can change, such as quantity in the code that follows,
prefix them with property. For write-only properties that can’t be read, use the
prefix setter, like id in the following code. Trying to show them is an error:

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/crystal/code/classes_and_structs/classes.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

classes_and_structs/classes.cr
class Mineral

@@planet = "Earth"

getter name, hardness, crystal_struct
setter id
property quantity : Float32

def initialize(@id : Int32, @name : String, @hardness : Float64,
@crystal_struct : String)

@quantity = 0f32
end

def self.planet
@@planet

end
end

min1 = Mineral.new(101, "gold", 1.0, "cubic")
min1.quantity = 453.0f32 # => 453.0
min1.id # => Error: undefined method 'id' for Mineral
Mineral.planet # => "Earth"

min2 = min1.dup
min1 == min2 # => false

You must make sure that properties are always initialized, either in the initialize
method or when calling new. The names of methods called on the class itself
are prefixed with self., like the planet method.

Use the dup method to create a “shallow” copy of the object: the copy min2 is
a different object, but if the original contains fields that are objects themselves,
these are not copied. If you need a “deep” copy, you have to define a clone
method.

You can also optionally write a finalize method for a class, which is automati-
cally invoked when an object is garbage collected:

def finalize
puts "Bye bye from this #{self}!"

end

But this creates a burden for the garbage collection process. You should use
it only if you want to free resources taken by external libraries that the
Crystal garbage collector won’t free for you. Add this code snippet to see
finalization at work, but be warned: you’ll exhaust your machine’s memory
by digging so much gold. So save anything you need before running it.

loop do
Mineral.new(101, "gold", 1.0, "cubic")

end

• Click HERE to purchase this book now. discuss

Structuring a Class • 7

http://media.pragprog.com/titles/crystal/code/classes_and_structs/classes.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

As in Ruby or C#, you can reopen a class, which means making additional
definitions of a class: they’re all combined into a single class. This even works
for built-in classes. How cool is it to define your own new methods on existing
classes, such as String or Array? (Yes, this is sometimes derisively called
“monkey patching,” and it’s not always a good idea.)

Your Turn 1
➤ a. Employee: Create a class Employee with a getter name and a property age.
Make an Employee object and try to change its name.

➤ b. Increment: Create a class Increment with a property amount and two versions
of a method increment: one that adds 1 to amount, and another that adds a value,
inc_amount.

Applying Inheritance
As in all object-oriented languages and much the same as in Ruby, Crystal
provides for single inheritance, indicated by: subclass < superclass. Putting
properties and methods common to several classes into a superclass lets
them all share functionality. That way, you can use all instance variables and
all methods of the superclass in the subclass, including the constructors.
You can see this in the following example where PDFDocument inherits initialize,
name, and print from Document:

classes_and_structs/inheritance.cr
class Document

property name

def initialize(@name : String)
end

def print
puts "Hi, I'm printing #{@name}"

end
end

class PDFDocument < Document
end

doc = PDFDocument.new("Salary Report Q4 2018")
doc.print # => Hi, I'm printing Salary Report Q4 2018

You can also override any inherited method in the subclass. If the subclass
defines its own initialize method(s), they aren’t inherited anymore. If you want
to use the superclass functionality after you overrode it, you can call any
method of the superclass with super:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/crystal/code/classes_and_structs/inheritance.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

classes_and_structs/inheritance.cr
class PDFDocument < Document

def initialize(@name : String, @company : String)
end

def print
super
puts "From company #{@company}"

end
end

doc = PDFDocument.new("Salary Report Q4 2018")
=> Error: wrong number of arguments for 'PDFDocument.new' (given 1,
=> expected 2)
doc = PDFDocument.new("Salary Report Q4 2018", "ACME")
doc.print

=> Hi, I'm printing Salary Report Q4 2018
From company ACME

Crystal’s type system gives you more options here. Instead of overriding, you
can define specialized methods by using type restrictions, such as print in
PDFDocument:

classes_and_structs/inheritance.cr
class PDFDocument < Document

def initialize(@name : String, @company : String)
end

def print(date : Time)
puts "Printing #{@name}"
puts "From company #{@company} at date #{date}"

end
end

doc = PDFDocument.new("Salary Report Q4 2018", "ACME")
doc.print(Time.now)

=> Printing Salary Report Q4 2018
From company ACME at date 2017-05-25 12:12:45 +0200

Using Abstract Classes and Virtual Types
Ruby doesn’t have native support for interfaces and abstract classes like Java
or C#. In both Ruby and Crystal, the concept of an interface is implemented
through modules, as you’ll see in the next chapter. But Crystal also knows
the concept of an abstract class, so if you’re a Rubyist, the following will be
new to you.

Not all classes are destined to produce objects, and abstract classes are a good
example. These serve instead as a blueprint for subclasses to implement their

• Click HERE to purchase this book now. discuss

Applying Inheritance • 9

http://media.pragprog.com/titles/crystal/code/classes_and_structs/inheritance.cr
http://media.pragprog.com/titles/crystal/code/classes_and_structs/inheritance.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

methods. Here you see a class, Rect (describing rectangles), forced to implement
all abstract methods from class Shape:

classes_and_structs/inheritance.cr
abstract class Shape

abstract def area
abstract def perim

end

class Rect < Shape
def initialize(@width : Int32, @height : Int32)
end

def area
@width * @height

end

def perim
2 * (@width + @height)

end
end

s = Shape.new # => can't instantiate abstract class Shape
Rect.new(3, 6).area # => 18

If one of the methods (say perim) isn’t implemented, the compiler issues an
error like the following:

error: "abstract `def Shape#perim()` must be implemented by Rect"

This lets you create class hierarchies where you can be confident that all
necessary methods are implemented.

You can create more intricate structures as well. In the following example,
class Document is called a virtual type because it combines different types from
the same type hierarchy—in this case, different documents:

classes_and_structs/virtual.cr
class Document
end

class PDFDocument < Document
def print

puts "PDF header"
end

end

class XMLDocument < Document
def print

puts "XML header"
end

end

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/crystal/code/classes_and_structs/inheritance.cr
http://media.pragprog.com/titles/crystal/code/classes_and_structs/virtual.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

class Report
getter doc

def initialize(@name : String, @doc : Document)
end

end

salq4 = Report.new "Salary Report Q4", PDFDocument.new
taxQ1 = Report.new "Tax Report Q1", XMLDocument.new

This virtual type is indicated by the compiler as type Document+, meaning that
all types inherit from Document, including Document itself. It comes into play in
situations like the one that follows where you’d expect d to be of a union type
(PDFDocument | XMLDocument):

if 4 < 5
d = PDFDocument.new

else
d = XMLDocument.new

end
typeof(d) # => Document

Instead, d is of type Document. Internally the compiler uses this as a virtual
type Document+ instead of the union type (PDFDocument | XMLDocument), because
union types quickly become very complex in class-hierarchies.

If you call a method in a subclass of Document, you get an error:

salq4.doc.print # => Error: undefined method 'print' for Document

To remove this error, simply make the class Document abstract.

classes_and_structs/virtual.cr
abstract class Document
end

salq4.doc.print # => PDF header

Your Turn 2
➤ Shape: Subclass Shape with classes Square and Circle. (Hint: Use PI from
the Math module with: include Math.)

• Click HERE to purchase this book now. discuss

Applying Inheritance • 11

http://media.pragprog.com/titles/crystal/code/classes_and_structs/virtual.cr
http://pragprog.com/titles/crystal
http://forums.pragprog.com/forums/crystal

