
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

15

Deferred Judgment

Defer.cs
string[] inputs = ["128", "256", "<error>", "512"];

IEnumerable<int> result;
try
{

result = from number in inputs
select Convert.ToInt32(number);

}
catch (Exception e)
{

result = [0];
}
var count = result.Count();

Console.WriteLine($"There are {count} elements");

Guess the Output

What’s the output from this program? Try to determine what you
expect it to do before moving on.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/csharpbt/code/Defer.cs
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

The output from the program is:

<System.FormatException>: The input string '<error>' was not
in a correct format.

The exception is caused by attempting to convert "<error>" to an int using the
int.Parse static method. Since the string "<error>" cannot be converted to int, a
FormatException is thrown, but it’s not caught by our catch handler because
assigning to result isn’t where the int.Parse method is called.

The problem with the code in this puzzle is representative of similar pitfalls
that are easily missed by novices and seasoned .NET developers alike. They
are all related to the lazy evaluation of LINQ expressions.

Discussion
The reason we get an exception from this code comes down to a single
underlying detail: IEnumerable sequences are evaluated lazily. Although the
expression to initialize the result variable uses the int.Parse method, the method
isn’t invoked until we call Count.

Many LINQ expressions take advantage of deferred execution, sometimes also
called lazy evaluation. Both of these terms simply mean that some expressions
aren’t evaluated until they’re needed. The result is that some expressions
involving LINQ—whether in the query expression format shown here, or its
fluent equivalent—don’t correspond to the sequential order of the statements
and expressions in the code. This isn’t a shortcoming of LINQ, it’s a feature.

The following shows the fluent equivalent of this puzzle’s code:

result = inputs.Select(number => Convert.ToInt32(number));

The outcome is exactly the same in either case: the result variable does not in
fact represent a sequence of int values, it represents only a potential sequence
of int. This may sound like magic, but it’s really just about delegates and
coroutines. Oh, and concrete (or crystals, if you’re more of a theoretical
materials scientist than an applied structural engineer).

Elements on Demand
A sequence of elements represented by IEnumerable<T> doesn’t necessarily
contain any elements until those elements are needed. The IEnumerable<T>

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

variable knows how to produce the real elements, but doesn’t store the ele-
ments themselves.

There are several LINQ operations that result in an uncrystallized sequence
where the true value of the elements is not yet known. What’s more is that
such sequences produce elements on demand.

A Where expression in LINQ, for example, works on one sequence and produces
a new sequence by filtering the elements from its input sequence based on a
predicate—a delegate that returns true or false based on its argument. To
illustrate how this works, consider the following contrived example:

int [] numbers = [20, 5, 2, 1];
var result = numbers.Where(n => n == 20);

if (result.Any())
{

// do something important with small numbers
}

The Any method returns true if its input sequence (the result sequence produced
by the Where expression) contains anything. To determine that, Any invokes
the Where expression, which in turn pulls elements from its input sequence
(the numbers array) until it finds one that matches its predicate. Here we’re
looking for numbers that equal 20, so the first element of the array is a match.
The remaining elements don’t need to be evaluated, and Any can immediately
report true.

In this code, the predicate given to Where is evaluated only once. If the numbers
array were rearranged so that 20 appeared in last place instead of at the start,
then the predicate would need to be evaluated four times: once for each ele-
ment until a match is found. If there are no matching elements, then every
number in the numbers array needs to be evaluated in order for Any to return
false.

This is where coroutines fit into the picture.

Coroutines
A coroutine is a section of code that can suspend itself and pass control back
to its caller. In C# coroutines are used as a convenient way to represent iter-
ators; an iterator is an abstract view of a position in a sequence that’s inde-
pendent of both the type of the elements and the sequence itself.

Any method containing the yield keyword is a coroutine and returns an iterator
in the form of an IEnumerable<T>. Each time yield is encountered at runtime,
the method pauses and control returns to wherever the coroutine method

• Click HERE to purchase this book now. discuss

Deferred Judgment • 5

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

was called. When the coroutine is next invoked, it restarts at the code following
the yield statement. Like many other LINQ operations, Where is implemented
as a coroutine. The following code shows a simplified view of Where’s implemen-
tation:

IEnumerable<T> Where<T>(this IEnumerable<T> input, Func<T, bool> predicate)
{

foreach (var element in input)
{

if(predicate(element))
yield return element;

}
}

The loop within Where inspects each element of the input sequence in turn
using the predicate delegate. If the predicate never returns true, the input
sequence is exhausted and the loop ends. If the predicate returns true for any
element, the element is yielded to the calling code and the Where method is
suspended. The next time Where is called, it resumes by obtaining the next
element from the input sequence and continues again until either the predicate
returns true or the input sequence is exhausted.

The call to Any in the previous section only invokes Where once, and it returns
after inspecting the first element because the predicate n => n == 20 returns
true. Since Where isn’t invoked again, the remaining elements are never
inspected.

Deferred vs. Concrete Execution
The Any method, along with its counterpart All, are examples of crystallizing
operations because they cause the sequence to be evaluated, if only partially.
Other crystallizing operations including Count and Average need to evaluate the
entire sequence to determine their result. Operations like ToArray and ToList
make a concrete collection from the sequence, and so also cause the whole
sequence to be evaluated.

The point of this puzzle is that a sequence isn’t evaluated at all until a crys-
tallizing operation is applied to it. The exception caused by the call to int.Parse
in the Where method’s predicate doesn’t get thrown until the offending element
("<error>") is evaluated, and that only happens when result.Count is called—out-
side of the try…catch block.

Deferred execution is part of the nature of LINQ, and you should try to stay
aware of when your LINQ expressions get evaluated. This puzzle represents
only one of several problems that can result from code that doesn’t run in

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

the order in which it’s written, but they all follow a similar pattern that you
can avoid by learning when deferred execution happens—and when it doesn’t.

Further Reading
Microsoft’s documentation has an introduction to LINQ and its syntax at

https://learn.microsoft.com/en-us/dotnet/csharp/linq/get-started/introduction-to-linq-queries

LINQ is largely defined by the Enumerable type and its extension methods, docu-
mented by Microsoft
at

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable?view=net-9.0

Jon Skeet describes how coroutines are used to implement iterators in his blog
at

https://www.jonskeet.uk/csharp/csharp2/iterators.html

• Click HERE to purchase this book now. discuss

Deferred Judgment • 7

https://learn.microsoft.com/en-us/dotnet/csharp/linq/get-started/introduction-to-linq-queries
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable?view=net-9.0
https://www.jonskeet.uk/csharp/csharp2/iterators.html
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

