
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

3

Nothing to See Here

Nothing.cs
string[] ParseParts(string? input)
{

return input switch
{

null => throw new ArgumentNullException(nameof(input)),
string.Empty => throw new ArgumentException(nameof(input)),
_ => input.Split(';')

};
}

Console.WriteLine(ParseParts(""));

Guess the Output

What does this program output? Try to guess before moving to
the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/csharpbt/code/Nothing.cs
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

This code does not compile.

The compiler complains that a constant string is required instead of
string.Empty. The fix is easy, but there are other much more subtle features in
modern C# that this puzzle highlights.

Discussion
The intention of the code is clearly to throw an exception if the input parameter
is either null or an empty string. string is a reference type meaning that string
objects live on the heap. A string variable is a reference to the object on the
heap, so null is a possible value for a string variable, but it’s not always desired.
In particular, you can invoke a method such as ToUpper on an empty string,
but if you attempt to do so on a null string reference you’ll get the error Object
reference not set to an instance of an object, a.k.a. the NullReferenceException. On the face
of it, preventing such errors is commendable—it’s a good example of defensive
code—but why would the compiler have a problem with string.Empty?

An empty string can be easily represented as "", and replacing string.Empty with
"" will allow the code to compile and have the desired behavior. However,
advice to use string.Empty rather than the literal "" is common, at least partly
because the former is considered to be a more explicit form of the latter. Being
more explicit in code is frequently considered to be a Good Thing™, so this
advice appears—again, on the face of it—wise.

In many situations string.Empty can be used as a more explicit substitute for
"", but not in all situations.

The Same or Similar
The string keyword is an alias for the Standard Library’s System.String type, which
has a public field named Empty. The Empty field is readonly, meaning it can’t be
changed, and its purpose is to represent an empty string (the clue really is
in the name).

The empty string literal can often be directly substituted by string.Empty. For
example we can assign either "" or string.Empty to a variable as shown in the
following code:

var empty = string.Empty;
var literal = "";

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

The string type customizes equality to compare a string’s contents, so two
string values with identical contents will compare equal. This is—of
course—true for empty strings too, as demonstrated in the following test:

Assert.That(empty == literal, Is.True);

By extension, comparing a value with "" will give the same result as comparing
with string.Empty; the following if statements have identical behavior:

if(empty == "") { /*...*/ }
if(empty == string.Empty) { /*...*/ }

However, the truth is that string.Empty can’t be used everywhere the literal ""
is valid, even though both represent exactly the same thing: an empty string.

Readonly vs. Constant
The string.Empty field is a variable, even though it’s readonly. The literal string ""
is a constant, meaning its value is known at compile time, and can be read
but not changed at runtime. A variable’s value isn’t known until the program
runs, even if it’s read only.

Since the value of a constant must be known at compile time there are strict
limitations on what the value can be. The list of valid constant values boils
down to one of the following:

• a numeric literal of any of the built-in numeric types
• a member of an enum type
• the Boolean literals true or false
• a literal Unicode character
• a string literal, including the empty string
• the null literal
• the result of nameof
• the result of a constant expression

A constant expression is any expression whose value can be calculated at
compile time. The components of a constant expression must, therefore, all
be constant values.

An interpolated string is a special kind of string that can contain interpolation
expressions. Interpolated strings are declared by an initial $ character before
the string content. The interpolation expressions can be any valid C# syntax,
including references to in-scope variables. From C# v10.0 an interpolated
string can be used to declare a const string provided all the interpolation
expressions within it are constant expressions.

• Click HERE to purchase this book now. discuss

Nothing to See Here • 5

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

Constants are required in a few contexts where a readonly variable isn’t permit-
ted. A const value must be initialized with a constant expression, and the case
labels within a classic switch statement or switch expression must all be con-
stants. The default values for optional parameters must be constants, too,
which we look at in more detail in 14, The Optional Default, on page ?.

The pattern matching expression used in this puzzle’s code is called the con-
stant pattern, and the values to be matched on the left of each => expression
must all be compile-time constant expressions, so the following pattern is
valid:

var seconds = 3819;
var isOver1Hour = seconds switch
{

> 60 * 60 => true,
_ => false

};

Here the pattern to be matched (60 * 60) is a constant expression rather than
the integer literal 3600 to represent the number of seconds in one hour.
Judicious use of constants and constant expressions can make code clearer
and easier to follow. We can define our own named constants too using the
const keyword. The value of a constant must be a constant expression, as
shown in the following:

const int totalSecondsPerHour = 60 * 60;

var seconds = 3819;
var isOver1Hour = seconds switch
{

> totalSecondsPerHour => true,
_ => false

};

Named constants can be a further aid to code clarity. Magic numbers in code,
such as the literal 3600, don’t provide much context or clue as to their meaning
or intent. The same applies to almost any literal value, with the possible
exceptions of null and "", either of which is arguably clear enough expressed
in its literal form.

Efficiency and Consistency
It isn’t possible to replace every instance of the "" string literal with its
string.Empty counterpart, because doing so might result in code that won’t
compile. However, it is reasonable to use "" everywhere that string.Empty would
be valid. Using the literal "" doesn’t introduce a new instance of System.String
in memory each time it’s used; the compiler employs string interning for string

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

literals, with the result that—with very few exceptions—each literal string in
a program, including the "" literal, exists only once in memory. String interning
isn’t a new feature, it’s been a feature of C# since v1.0.

Replacing magic numbers—or almost any literal—with a named constant is
generally good advice as long as the name expresses the value’s purpose more
clearly than a literal. The name Ten doesn’t express intent any better than the
literal number 10. In the same way, string.Empty merely restates the value of ""
in a different way.

The double.NaN value, which is superficially similar to string.Empty, needs special
handling, as we’ll explore in 7, Inequality Among Equals, on page ?. The
argument about literals versus magic constants exposes one more inconsis-
tency with using string.Empty: the identifier string.Null does not exist.

While we’re on the topic of code clarity, we could replace the original code for
this puzzle with the following:

string[] ParseParts(string? input)
{

ArgumentException.ThrowIfNullOrEmpty(input, nameof(input));
return input.Split(';');

}

The ArgumentException.ThrowIfNullOrEmpty method was added in C# v11.0 with .NET
v7.0 and captures the error precisely. It builds on the ArgumentNullException.Throw-
IfNull method first introduced in .NET v6.0. The similar ArgumentException.Throw-
IfNullOrWhitespace method was added in C# v12.0 (.NET v8.0), which throws an
ArgumentException if the string is null, empty, or consists only of whitespace
characters. Also introduced in .NET v8.0 were similar static methods on the
ArgumentOutOfRangeException class:

• ThrowIfEqual
• ThrowIfNotEqual
• ThrowIfGreaterThan
• ThrowIfGreaterThanOrEqual
• ThrowIfLessThan
• ThrowIfLessThanOrEqual
• ThrowIfNegative
• ThrowIfNegativeOrZero
• ThrowIfZero

Not only do these methods encapsulate common error conditions, they also
follow and endorse the idea of using names to make code clearer and easier
to read.

• Click HERE to purchase this book now. discuss

Nothing to See Here • 7

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

Further Reading
The Microsoft documentation on System.String.Empty is at

https://learn.microsoft.com/en-us/dotnet/api/system.string.empty

The Microsoft documentation on string types, including the recommendation to
use string.Empty, is at

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#null-strings-and-
empty-strings

The rules regarding versioning semantics for const and readonly is documented
by Microsoft at

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
classes#15533-versioning-of-constants-and-static-readonly-fields

Jon Skeet explains the string interning mechanism in his blog
https://csharpindepth.com/articles/Strings

• 8

• Click HERE to purchase this book now. discuss

https://learn.microsoft.com/en-us/dotnet/api/system.string.empty
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#null-strings-and-empty-strings
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#null-strings-and-empty-strings
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/classes#15533-versioning-of-constants-and-static-readonly-fields
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/classes#15533-versioning-of-constants-and-static-readonly-fields
https://csharpindepth.com/articles/Strings
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

