
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

6

Precision Instruments

Precise.cs
var x = 1.1;
var y = 2.2;

Console.WriteLine($"{x} + {y} == {x + y}");

Guess the Output

What precisely does this program output? Try to guess before
moving on.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/csharpbt/code/Precise.cs
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

The program outputs the following:

1.1 + 2.2 == 3.3000000000000003

Platform Alert

Note that this is one example where .NET Framework produces a
different output from .NET because the default precision specifier
for doubles is different. See Further Reading, on page 6 for refer-
ences to more information.

Discussion
Floating point arithmetic can produce unexpected results and, as this puzzle
demonstrates, it’s not an issue that’s limited to either very large or very small
numbers. Integer arithmetic isn’t without its surprises, as we’ll see in 9, So,
What’s Left?, on page ?, but calculations involving floating point numbers
are frequently subject to the effects of rounding, which is inherent to the way
that floating point numbers are stored in memory.

The results of floating point calculations in a program might be unexpected,
but are never arbitrary. The reality is that those calculations are governed by
strict rules that produce predictable results. However, if you predicted that
the output would not be exactly 3.3 but didn’t quite guess precisely the actual
output, don’t be too hard on yourself.

Mathematicians have the concept of real numbers. These can represent any
number, and there are infinitely many of them. Floating point numbers in
code look very like real numbers because they’re often written using a decimal
point (1.23, 3.14159, and so on) just as real numbers are. But floating point
numbers aren’t the same as real numbers; in the first place there are only a
finite number of them.

The floating point types used in C# are represented according to the IEEE
Standard for Floating Point Arithmetic, a.k.a. IEEE-754, which makes for
very dry reading but specifies exactly how floating point numbers are repre-
sented, and how calculations involving them should behave.

The compromise is that a double (a double precision number) uses 64 bits, with
the result that many numbers don’t have an exact representation. Instead,
the value stored in memory may be an approximation that’s very close to the
exact value but differs in its least significant digits.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

This compromise is demonstrated in practice in this puzzle’s code. The result
of adding 1.1 to 2.2 can’t be represented exactly in a double so it’s been rounded
up by a tiny amount to the nearest value that can be exactly represented.

However, this explanation still doesn’t tell the whole story. The displayed
output clearly shows that 3.3 has been rounded, but appears to show that
the values for x and y haven’t been affected. In fact neither 1.1 nor 2.2 has an
exact representation, but the effects of rounding them don’t appear when
they’re written to the screen.

Precision and Tolerance
When a binary floating point number—a double or float value—is written to the
screen via Console.WriteLine, the default behavior is to call the value’s ToString
method to translate the value to a displayable format. In the absence of any
further guidance by the programmer, double.ToString automatically rounds the
number to its most compact round-trippable representation (the behavior in
.NET Framework is slightly different; see Further Reading, on page 6 for
some links to the Microsoft documentation for more information on that).

For the purposes of this discussion it’s sufficient to say that round-trippable
means that for some floating point value x, the following is true:

double.Parse(x.ToString()).Equals(x);

We can provide more detailed instructions on how to represent the value via
the format specifier to ToString. For example, the following code uses the G
(standing for General) format specifier to display the value 1.1 with up to 32
significant digits:

Console.WriteLine($"{1.1:G32}");

That code produces the following output:

1.1000000000000000888178419700125

This clearly shows that the double value 1.1 can’t be exactly represented in a
double, because its true value has been rounded up by a tiny amount. However,
the most compact round-trippable representation of 1.1 is in fact exactly 1.1.
Were we to parse the string "1.1" into a double, we’d get exactly the same value,
including the tiny rounding up. Similarly, the value 2.2 has a round-trippable
representation of "2.2", but the most compact representation of the result of
adding 1.1 and 2.2 must include the rounding up in order to guarantee that
parsing the string back to a double produces the correct value, explaining the
output from this puzzle’s original code.

• Click HERE to purchase this book now. discuss

Precision Instruments • 5

http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

Error Magnification
One final puzzle remains. If we print the constant value 3.3 to the console,
the output is exactly "3.3", so why is the output of 1.1 + 2.2 so different? The
answer to that question is most easily demonstrated in a simple unit test,
such as the following:

var x = 1.1;
var y = 2.2;

Assert.That(x + y, Is.EqualTo(3.3));

Although arithmetically speaking the result of 1.1 + 2.2 is 3.3, this test fails
with a result similar to the following:

Expected: 3.2999999999999998d
But was: 3.3000000000000003d

The Expected value is the constant number 3.3, but the output shows that its
actual internally stored value has been rounded down by a tiny amount
because 3.3 can’t be represented exactly in a double. Just as importantly, note
that the result of 1.1 + 2.2 has been rounded by a similarly small amount, but
the rounding has been applied differently. This is because neither of the two
values, 1.1 and 2.2, has an exact representation, so they will have been indi-
vidually rounded before the addition. The result is that the rounding error
has been amplified in the result.

It is for this reason that directly comparing floating point numbers for
equality in an expression like x == y or x.Equals(y) should usually be avoided;
the rounding of floating point numbers that’s a direct consequence of how
they’re stored in memory makes such comparisons unreliable, at best. This
behavior is by design, as laid out in the IEEE-754 International Standard.

The lesson here is that relying on console (or log file) output to check floating
point numerical values by eye is unreliable. A unit test is a much better way
to diagnose any problems you encounter with floating point arithmetic.

Further Reading
Wikipedia has lots of information on IEEE-754 at

https://en.wikipedia.org/wiki/IEEE_754

The default format specifier for double values is described in the Microsoft docu-
mentation at

https://learn.microsoft.com/en-us/dotnet/api/system.double.tostring?view=net-8.0#system-
double-tostringa

• 6

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/IEEE_754
https://learn.microsoft.com/en-us/dotnet/api/system.double.tostring?view=net-8.0#system-double-tostringa
https://learn.microsoft.com/en-us/dotnet/api/system.double.tostring?view=net-8.0#system-double-tostringa
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

The difference when using the “G” format specifier in .NET and .NET Framework
is explained at

https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-
strings#general-format-specifier-g

• Click HERE to purchase this book now. discuss

Precision Instruments • 7

https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings#general-format-specifier-g
https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings#general-format-specifier-g
http://pragprog.com/titles/csharpbt
http://forums.pragprog.com/forums/csharpbt

