
Extracted from:

Programming Flutter
Native, Cross-Platform Apps the Easy Way

This PDF file contains pages extracted from Programming Flutter, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Flutter
Native, Cross-Platform Apps the Easy Way

Carmine Zaccagnino

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Michael Swaine
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-695-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Give the App Your Personal Touch
Now let’s modify what we’ve seen. We’ll change the app color to be green, add
a red reset button to reset the counter to 0, make the app display the string
“None” instead of the counter when the counter is at 0 and change the appBar’s
title text. In doing this, we’ll get a feel for how to make simple changes, and
also an introduction to more complex Flutter syntax.

The result will look like this:

Change the App’s Primary Color
We’ll start editing our app with the simplest change: changing the color to green.
This is as simple as changing the following few lines in MyApp’s build method:

firstapp_starting/lib/main.dart
theme: ThemeData(

primarySwatch: Colors.blue,
),

Go ahead and change Colors.blue to Colors.green so that those lines instead read
as follows:

firstapp/lib/main.dart
theme: ThemeData(

primarySwatch: Colors.green,
),

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/czflutr/code/firstapp_starting/lib/main.dart
http://media.pragprog.com/titles/czflutr/code/firstapp/lib/main.dart
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Make the Counter Display “None” Instead of 0
Now, let’s change the counter text in the middle so that it displays “None”
instead of 0.

To do this, we’ll add a _displayedString variable to _MyHomePageState, below the
counter’s declaration.

Locate the following line:

int _counter = 0;

and, below it, add:

String _displayedString;

After we’ve done that, we need to set this variable to “None” if the counter is
0 and to a string representation of the counter if that isn’t the case. We’re
going to need a conditional.

Use Conditionals in Flutter

To do this every time the counter is increased (which we do using a call to
setState that triggers a re-render that calls the build method), this needs to be
part of _MyHomePageState’s build method. So, just above:

return new Scaffold(

add:

firstapp/lib/main.dart
if(_counter == 0) {

_displayedString = "None";
} else {

_displayedString = _counter.toString();
}

This is a simple if-else construct and, like in many other languages, it could
also be expressed in a braceless way as:

if(_counter == 0) _displayedString = "None";
else _displayedString = _counter.toString();

or, with a conditional expression, as:

_displayedString = _counter == 0 ? "None" : '$_counter';

You can find more information about conditional constructs and expressions
in Conditional Constructs and Expressions, on page ?.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/czflutr/code/firstapp/lib/main.dart
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Set the Counter Text
Now we need to replace the counter with the string we’ve just generated.

Use String Literals in Dart

At the moment, the code we’re using to generate the Text widget for the counter
looks like this:

firstapp_starting/lib/main.dart
Text(

'$_counter',
style: Theme.of(context).textTheme.display1,

),

You might have noticed the syntax currently used to display the counter to
the user:

'$_counter'

The single quotes (unlike in C, C++, and Java, single and double quotes are
the same in Dart) enclose a string literal, and inside this string literal is a
variable name (_counter) preceded by a dollar sign.

Use String Interpolation

In this case, this is an alternative to the syntax we used earlier to convert an
integer to a string (_counter.toString()).

This is how string literals work in Dart: they are enclosed in single or double
quotes. And we can include variables in string literals by preceding the variable
name with a dollar sign.

If we need to use string interpolation with an expression or dot notation (for
example, to use member variables of objects or display results of expressions),
we need to enclose the variable name in braces. We’ll need to do this shortly
for the app title.

You can find more information about string literals and string interpolation
in Characters and Strings, on page ?.

Back to our example. Since we now want to display a string, we can replace:

'$_counter'

to be just:

displayedString

since we don’t need to use string literals.

• Click HERE to purchase this book now. discuss

Give the App Your Personal Touch • 7

http://media.pragprog.com/titles/czflutr/code/firstapp_starting/lib/main.dart
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Change the App’s Title
To change the appBar’s title to “An app that can count to [0, 1, 2, 3…]” we need
to use string interpolation.

We will use a fixed string defined in the app’s constructor and a variable part,
which will be created inside the build method.

The fixed part is the title we give to MyHomePage’s constructor (and which then
becomes widget.title), which will be “An app that can count to”:

firstapp_starting/lib/main.dart
home: MyHomePage(title: 'Flutter Demo Home Page'),

);

will have to become:

firstapp/lib/main.dart
home: MyHomePage(title: 'An app that can count to'),

);

Now we need to edit _MyHomePageState’s build method again, since that’s what
gets called every time the app’s state changes, and that’s where the variable
part of the string will have to be generated.

To do what I just described, locate the following lines:

firstapp_starting/lib/main.dart
appBar: AppBar(

title: Text(widget.title),
),

and change:

widget.title

to:

'${widget.title} $_counter'

so that those lines now instead read as follows:

firstapp/lib/main.dart
appBar: AppBar(

title: Text('${widget.title} $_counter'),
),

As you can see, we’ve done the opposite of what we did to the counter, and
we had to use braces for widget.title because dot notation was needed to access
a member variable.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/czflutr/code/firstapp_starting/lib/main.dart
http://media.pragprog.com/titles/czflutr/code/firstapp/lib/main.dart
http://media.pragprog.com/titles/czflutr/code/firstapp_starting/lib/main.dart
http://media.pragprog.com/titles/czflutr/code/firstapp/lib/main.dart
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Add a Reset Button
The last thing we need to do to get to the app in the screenshots shown earlier
is to add the reset button.

Before we add the button itself, let’s define a simple method that changes the
state and resets the counter to 0.

Use setState() to Reset the Counter

Inside _MyHomePageState’s definition, below _incrementCounter()’s definition, add
the following code:

firstapp/lib/main.dart
void _resetCounter() {

setState(() {
_counter = 0;

});
}

This is very similar to _incrementCounter() but, instead of incrementing the
counter, we set it to 0.

Make the Reset Button

Now that we’ve defined a method that resets the counter and triggers a re-
render, we need to create a button to call that function. So before we do that,
we need to know how we do that with Flutter.

Buttons in Flutter: The FlatButton and the IconButton

If we want to quickly create a button in Flutter we can choose between a
FlatButton or an IconButton.

The FlatButton is ideal when you want a button that displays text: it has a child
attribute that is usually a Text widget, but you have the option to set it to
anything.

The reason why the FlatButton is used mostly for text buttons is that using an
IconButton exists specifically for the creation of icon-based buttons, by allowing
the developer to specify an Icon object as its icon attribute, with the button only
consisting of the icon and a small amount of padding.

One of the attributes that show the difference in focus is that the FlatButton’s
color attribute controls the color of the button itself (the background to its
content), whereas the IconButton’s color attribute control’s the icon’s color.

A RaisedButton also exists, but it is just a slightly different looking FlatButton.

• Click HERE to purchase this book now. discuss

Give the App Your Personal Touch • 9

http://media.pragprog.com/titles/czflutr/code/firstapp/lib/main.dart
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Implement the Reset Button

For this example we’ll make a FlatButton.

To add the button, locate the following lines in _MyHomePageState’s build method:

firstapp_starting/lib/main.dart
children: <Widget>[

Text(
'You have pushed the button this many times:',

),
Text(

'$_counter',
style: Theme.of(context).textTheme.display1,

),
],

and add, inside the square brackets, the following to the list of widgets:

firstapp/lib/main.dart
FlatButton(

onPressed: _resetCounter,
color: Colors.red,
child: Text(

"Reset counter",
style: Theme.of(context).textTheme.button,

),
),

First of all, the action we want to perform is to fire the _resetCounter function,
so we set that as the onPressed attribute.

The FlatButton’s color attribute should not be confused with the CSS attribute
that goes by the same name: as I described earlier, it changes the button’s
background color, not the text color, which we’ll leave black.

The child attribute is just a text string with the built-in button text theme.

The final code is:

firstapp_oldfab/lib/main.dart
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {

return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(

primarySwatch: Colors.green,
),

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/czflutr/code/firstapp_starting/lib/main.dart
http://media.pragprog.com/titles/czflutr/code/firstapp/lib/main.dart
http://media.pragprog.com/titles/czflutr/code/firstapp_oldfab/lib/main.dart
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

home: MyHomePage(title: 'An app that can count to'),
);

}
}

class MyHomePage extends StatefulWidget {
MyHomePage({Key key, this.title}) : super(key: key);
final String title;

@override
_MyHomePageState createState() => _MyHomePageState();

}

class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
String _displayedString;

void _incrementCounter() {
setState(() {

_counter++;
});

}
void _resetCounter() {

setState(() {
_counter = 0;

});
}
@override
Widget build(BuildContext context) {

if(_counter == 0) {
_displayedString = "None";

} else {
_displayedString = _counter.toString();

}
return Scaffold(

appBar: AppBar(
title: Text('${widget.title} $_counter'),

),
body: Center(

child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',

),
Text(
_displayedString,
style: Theme.of(context).textTheme.display1,

),
FlatButton(
onPressed: _resetCounter,
color: Colors.red,

• Click HERE to purchase this book now. discuss

Give the App Your Personal Touch • 11

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

child: Text(
"Reset counter",
style: Theme.of(context).textTheme.button,

),
),

],
),

),
floatingActionButton: FloatingActionButton(

onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),

),
);

}
}

Now, build and run or reload the app and the result will be the same as the
screenshots we saw earlier.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

