
Extracted from:

Programming Flutter
Native, Cross-Platform Apps the Easy Way

This PDF file contains pages extracted from Programming Flutter, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Flutter
Native, Cross-Platform Apps the Easy Way

Carmine Zaccagnino

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Michael Swaine
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-695-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Preface
This book is about Flutter, Google’s open source software development kit
(SDK) that can be used to develop applications across a wide range of plat-
forms. We’ll begin by taking a brief look at its history, followed by an overview
of its features and what we will see during the course of this book.

At the end of this Preface you’ll find information about the installation and
usage of the Flutter SDK and integrated development environment (IDE)
plugins.

A Brief History of Flutter
In 2015 Google unveiled Flutter, a new SDK based on the Dart language, as
the next platform for Android development, and in 2017 an alpha version of
it (0.0.6) was released to the public for the first time.

At I/O 2017 Google showed off using Flutter and its multi-platform capabili-
ties, and continued promoting it at I/O 2018. Since then, Google has been
investing in Flutter and recommending it as the way everyone should be
developing mobile apps.

In December 2018 Flutter 1.0 was released and made available so that
developers could begin using the SDK to make app creation easier.

At Google I/O 2019, Flutter support for desktop and web platforms was
publicly announced. Tools for developing Flutter apps for Windows, macOS,
Linux, and the web were released.

In addition to being unstable and untested, desktop development is being
held back further by the lack of plugin support, which is very limited mostly
because, at the time of writing, plugin tooling is still in the process of being
developed, meaning that binaries for the platform-specific code for each
platform has to be manually built and linked by editing the Google-provided

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Makefiles that can be found in Google’s dedicated flutter-desktop-embedding
GitHub repository.1

On the other hand, web support is progressing quickly and shouldn’t take
much more than a rebuild of a working Flutter mobile project that doesn’t
have any native plugins or platform-specific code.

Why Flutter Matters and What We’ll See in This Book
Flutter’s entry into the mobile app development framework space is recent
and, because of that, Flutter needs to carry significant improvements over
existing frameworks and SDKs to actually be useful—and it does.

For one thing, with Flutter you’ll be able to develop apps that work with
Android, iOS, and Google Fuchsia,2 (which might replace Android and/or
Chrome OS at some point in the future). Flutter is developed by Google, but
it fully supports iOS, and this means you can now also run an iOS emulator
and build for iOS in Android Studio. However, you won’t be able to build iOS
apps on Linux or Windows because iOS emulation and compilation is still
done through Xcode.

Flutter makes developing apps incredibly easy by allowing you to define the
app’s UI declaratively but in the same place and language you define the app
logic (no XML UI files required). You can instanly preview the changes you
make to your app using stateful hot reload.

Additionally, its cross-platform nature doesn’t skimp on having a native look
and feel, as the framework supports all of the typical native features of each
of the operating systems (different app bar, different list drag to update,
Material Design and Apple icons, etc.). The advantages compared to other
cross-platform frameworks don’t end there: you’ll be able to run any native
Kotlin/Java and Swift/Objective-C method using platform channels, as we’ll
see in Integrating Native Code: Making Plugin Packages, on page ?.

Even though it’s really new, Flutter is already used by some big and estab-
lished companies (as well as many smaller ones) to build cross-platform
mobile apps, as you can see in Google’s Flutter Showcase Page.3

We’ll be using Flutter packages and plugins (many of them developed by
Google) to build ever more useful apps, also introducing more advanced
standard Flutter features such as navigation and animations.

1. https://github.com/google/flutter-desktop-embedding
2. https://en.wikipedia.org/wiki/Google_Fuchsia
3. https://flutter.dev/showcase

Preface • vi

• Click HERE to purchase this book now. discuss

https://github.com/google/flutter-desktop-embedding
https://en.wikipedia.org/wiki/Google_Fuchsia
https://flutter.dev/showcase
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Don’t Know Dart? Don’t Worry About It
You might want to read Appendix 1, Introduction to Dart, on page ? if you
don’t have much programming experience or find even the first chapter difficult
to follow because of Dart’s syntax; many Dart-specific constructs will be
explained during the course of the book, but you might want to consider going
through that appendix first if you find yourself struggling to understand
the code.

Installing the SDK and the IDE Plugins
To use Flutter, you need to install its SDK, and to be able to get on with your
programming in a quick and uncomplicated manner, you’ll probably want to
install the IDE tools too.

If you prefer to use the command line (maybe because you want to use other,
perhaps lighter, IDEs or text editors) there will be guidance on the usage of
the flutter command throughout the book.

Installing Flutter
The installation process for the Flutter SDK differs slightly for each operating
system, so I’ll separate the instructions into three sections. Skip ahead to the
instructions specific to your platform and, if you want to install them, the
part that covers IDE plugin installation.

At the time of writing, the latest stable version is 1.9.1 and requires a 495MB
download on Linux (tar.xz archive), a 655MB download on Windows (zip
archive), or a 786MB download on macOS (zip archive).

Installing on Linux

On a Linux machine only Android development is supported, so we will install
just the Android SDK and the Flutter SDK itself. You’ll receive guidance for
both CLI and graphical installation methods.

Installing the Android SDK on Linux

If you have never developed Android apps, you need to install the Android
SDK, which includes the tools needed to build and debug Android apps.

In order to use Flutter, you need to install Android Studio and the Android
SDK tools. Flutter requires Android Studio to be installed, but you don’t have
to use it for development.

• Click HERE to purchase this book now. discuss

Don’t Know Dart? Don’t Worry About It • vii

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Alternatives to the Official Zip File

On Gentoo and Arch Linux you can use packages to install the
Android SDK and/or Android Studio:

• On Gentoo, you can install the Android Studio package4 by
running emerge --ask dev-util/android-studio;

• For Arch Linux there is an actively maintained and popular
package available on the AUR called android-studio5.

Start by heading over to the downloads page on the Android Developers page:6

there you’ll find links for the .zip download of Android Studio (around 1GB
in size).

Regardless of what you choose, you might need to install some 32-bit libraries
to make the SDK work on a 64-bit operating system:

• On Debian/Ubuntu, run sudo apt install libc6:i386 libncurses5:i386 libstdc++6:i386
lib32z1 libbz2-1.0:i386

• On Fedora, run sudo dnf install zlib.i686 ncurses-libs.i686 bzip2-libs.i686.

After that, we’re ready to actually install the Android SDK.

To do that using the full Android Studio installer, after extracting the zip file
you downloaded from Google’s website, run the studio.sh script contained in the
bin subdirectory. This will start a setup wizard. After you complete the setup of
the SDK you can launch Android Studio by running that same studio.sh script.

Installing the Flutter SDK on Linux

This part will provide guidance for Linux installation aimed at beginners; if
you are comfortable with the command line the CLI steps will be more pre-
dictable. (For complete Linux newbies it might be easier to follow GUI-oriented
guidance since that’s usually more familiar.)

Alternatives to the Tarball

There are alternatives to installing the official tarball:

• Arch Linux has an actively maintained package in the AUR to
install Flutter.7

4. packages.gentoo.org/packages/dev-util/android-studio
5. aur.archlinux.org/packages/android-studio/
6. https://developer.android.com/studio#downloads
7. aur.archlinux.org/packages/flutter/

Preface • viii

• Click HERE to purchase this book now. discuss

https://packages.gentoo.org/packages/dev-util/android-studio
https://aur.archlinux.org/packages/android-studio/
https://developer.android.com/studio#downloads
https://aur.archlinux.org/packages/flutter/
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

The Linux download is a source tarball that also contains the script needed
to run the flutter command, which means you just need to extract it and add
the bin subdirectory of the extracted tarball to the PATH environment variable.

Before we can do that, we need to browse to the SDK archive8 page on Flutter’s
official website and download the latest stable version.

Alternatively, in a CLI-only environment, you can download the 1.2.1 tarball
using curl https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-
stable.tar.xz -o flutter_linux_v1.2.1-stable.tar.xz.

Extract the tarball you just downloaded with any GUI tool of your liking or
by running the following command:

$ tar -xf flutter_linux_v1.2.1-stable.tar.xz

Now we need to add the executable script to the PATH environment variable.

Before doing this, you need to take note of the directory where you extracted
the tarball. It contains a flutter directory, inside which there is a bin directory;
we need to know the path to reach that bin directory.

If you are using the GUI, in most distribution it is available by browsing the
directory’s properties. It will be something along the lines of /home/username/Down-
loads/flutter_linux_v1.9.1-stable/flutter/bin if you have gone with the default settings
for each piece of software used in the steps we described earlier. I suggest
moving this to a more permanent path; ideally one at which you’ll remember
you have installed Flutter.

If you worked in the CLI using the commands just outlined, browse to your
Flutter installation directory and then change the working directory to the
flutter/bin subdirectory by running:

$ cd flutter/bin

and get the working directory by running:

$ pwd

which will return something along the lines of /home/username/flutter/bin (here
you’ll see the path where you installed Flutter, so your mileage may vary
significantly).

8. https://flutter.dev/docs/development/tools/sdk/archive?tab=linux

• Click HERE to purchase this book now. discuss

Installing the SDK and the IDE Plugins • ix

https://flutter.dev/docs/development/tools/sdk/archive?tab=linux
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Know Your Shell

This section supposes that your shell is Bash.9 This is the case
for most Linux distributions (and Unix-like operating systems in
general—some exceptions are the BSDs, which have tcsh,10 ksh,11

or ash,12 and Arch Linux’s installer, which runs on Zsh13 but
installs Bash by default) and, since you would need to manually
install and configure a different one, you probably would know
how to add a directory to its PATH.

To add this to the PATH environment variable, we need to edit ~/.bash_profile.

To do that using the GUI, you first need your file manager to display hidden
files. If you can’t find a file named .bash_profile in your home directory, you need
to toggle the option that makes the file manager show hidden files, and this
depends on the file manager that you’re using:

• In Nautilus (a.k.a. GNOME Files, default in most distributions using the
GNOME desktop like Ubuntu, RHEL, Fedora, and default SLED and
Debian) you need to press Ctrl+H . This shortcut also works in PCManFM
(part of the LXDE, as found in Lubuntu), Caja (part of Mate), and Thunar
(part of the XFCE desktop, as found in Xubuntu).

• If you are using the KDE desktop (for example when running Kubuntu
or when choosing it when installing distributions like openSUSE or Debian)
and its default Dolphin file manager, use Alt++ .

Once you have located a file called .bash_profile, open it with any text editor and
add the following line to the end of it, in a new line:

export PATH=$PATH:/home/username/etc

where you’ll replace /home/username/etc with the string you took note of
earlier.

If you prefer using the command line or just want a copy-paste experience
from this installation guide, you can instead open a terminal window or TTY
and run the following command:

$ echo "export PATH=$PATH:/home/username/etc" >> ~/.bash_profile

9. en.wikipedia.org/wiki/Bash_(Unix_shell)
10. https://en.wikipedia.org/wiki/Tcsh
11. https://en.wikipedia.org/wiki/KornShell
12. https://en.wikipedia.org/wiki/Almquist_shell
13. https://en.wikipedia.org/wiki/Z_shell

Preface • x

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Tcsh
https://en.wikipedia.org/wiki/KornShell
https://en.wikipedia.org/wiki/Almquist_shell
https://en.wikipedia.org/wiki/Z_shell
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

replacing /home/username/etc with the path you found earlier for the extracted
tarball’s flutter/bin directory.

To actually be able to run the flutter command, you need to refresh your termi-
nal’s configuration by running:

$ source ~/.bash_profile

Installing on Windows

Just like on Linux, Windows-only Android development is supported, so we
will install just the Android SDK with Android Studio and the Flutter SDK
itself.

Installing the Android SDK on Windows

All you need to do to install the Android SDK on Windows is to download and
run the Android Studio installation file available on the official download
page.14 This will also install the feature-rich Android Studio IDE. After
installing Android Studio, you will be guided through the installation of the
Android SDK.

Installing the Flutter SDK on Windows

To install the Flutter SDK on Windows you need to install Git for Windows
first. You can find the installation file for it on its official download page.15

During installation, you need to choose the Use Git from the Windows Com-
mand Prompt option.

After you have installed Git, download the latest version of Flutter from its
official installation page.16 This, unlike what happens with most of the software
available for Windows, will download a zip archive (a.k.a. a compressed folder)
that contains a flutter folder: extract it wherever you want (this will be the SDK
folder any IDE plugin will ask you to enter).

If you want to run a command on the Flutter Console, run the flutter.bat script
contained in the bin subfolder.

Installing on macOS

The advantage macOS has is that it also supports iOS building and debugging.
To take advantage of that, we also need to install Xcode and the iOS SDK.

14. https://developer.android.com/studio#downloads
15. https://git-scm.com/download/win
16. https://flutter.dev/docs/development/tools/sdk/archive

• Click HERE to purchase this book now. discuss

Installing the SDK and the IDE Plugins • xi

https://developer.android.com/studio#downloads
https://git-scm.com/download/win
https://flutter.dev/docs/development/tools/sdk/archive
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Installing Xcode and the iOS SDK

To be able to run Flutter and use it for iOS development you need to download
Xcode17 and the iOS SDK18 from Apple’s official website.

Installing the Android SDK on macOS

Installing the Android SDK on macOS is really simple: head over to the Android
Studio downloads page19 to download the .dmg file that also includes the
feature-rich but resource intensive Android Studio IDE.

Installing the Flutter SDK on macOS

Installing Flutter on macOS is very similar to installing Flutter on Linux. The
main differences are that macOS uses the zip archive format instead of the
more efficient tar.xz format, and there are no OS or GUI differences among
distributions to contend with.

Start by downloading the latest stable .zip from Flutter’s official website.20

Unzip it to any directory, then open the flutter directory you just extracted.
Press D+ I and take note of the path that appears to the right of Where:.

Now, open a Terminal window and run the command:

$ nano ~/.bash_profile

After doing that, paste the following in the terminal window:

export PATH=$PATH:/example/path/to/flutter/bin

replacing /example/path/to/flutter/bin with the path you took note of earlier.

All that’s left to do is to close the file using Ctrl-X and confirming you want to
save the file by pressing Y .

To actually be able to run the flutter command, you need to refresh your termi-
nal’s configuration by running:

$ source ~/.bash_profile

Installing the IDE Plugins
The Flutter IDE plugins for VSCode and Android Studio are installed using
the canonical installation tools and techniques for each IDE. They also require
the installation of the respective Dart plugin.

17. https://developer.apple.com/xcode/
18. https://developer.apple.com/ios/
19. https://developer.android.com/studio#downloads
20. https://flutter.dev/docs/development/tools/sdk/archive?tab=macos

Preface • xii

• Click HERE to purchase this book now. discuss

https://developer.apple.com/xcode/
https://developer.apple.com/ios/
https://developer.android.com/studio#downloads
https://flutter.dev/docs/development/tools/sdk/archive?tab=macos
http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

If you’re not familiar with that process, we’ll now discuss how to install the
Flutter plugin on each IDE.

VSCode

To install the Flutter plugin for Visual Studio Code you need to open Visual
Studio Code itself, then use the keyboard shortcut Ctrl-Shift-P to open the
command palette, then type “Install extensions” and press Enter .

On the panel that opens up on the left, type Flutter and press Enter .

Click the Install button in the Flutter entry in the list, this will install both
the Flutter and the Dart plugins.

Unlike the Flutter plugin for Android Studio, the Flutter plugin for Visual
Studio Code plugin will auto-detect the location where the Flutter SDK is
installed.

Android Studio

To install the Flutter plugin for Android Studio you need to navigate to File
> Settings > Plugins, click Browse repositories..., type Flutter and click Install.

To create a Flutter Project in Android Studio you need to restart Android
Studio if you haven’t since installing the Flutter plugin, navigate to File > New
Flutter Project, choose Flutter Application and give the app a name and a path,
set the package name and you’re done.

Using the CLI and the Plugins
There are two ways of interacting with the Flutter SDK: using the flutter CLI
command directly or through the IDE plugins. The plugins for Android Studio
and VSCode are very different to use, as they adapt to the usual conventions
of the respective IDE.

Create a Flutter App Project

To create a Flutter app project, run the flutter create appname command or follow
the procedure corresponding to the IDE you want to use to develop your app:

• In Android Studio, click on File > New > New Flutter Project... and follow
the instructions that will appear on screen;

• In Visual Studio Code, hit Ctrl+Shift+P to open the Command Menu and
type New Project, Flutter: New Project should appear as an option in the
menu, click on it and then type a name for your app project.

• Click HERE to purchase this book now. discuss

Installing the SDK and the IDE Plugins • xiii

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Building and Running

You can build a Flutter app using the flutter build command when the working
directory is the project’s root directory (where pubspec.yaml is located):

• To build an APK for your app (standard Android installation file), use
flutter build apk.

• To build an iOS application bundle, use flutter build ios.

• To build an Android App Bundle (the new generation Android installation
file that reduces file size), use flutter build appbundle.

If you want to run the app directly on an open emulator or a device connected
by USB (with USB Debugging turned on in the device’s settings), use flutter run.

If you’re using an IDE, you can use the Flutter plugin to run apps directly
from the IDE.

To run an app on an open emulator or connected USB device:

• Using VSCode, press F5 or click on Debug > Start Debug.
• Using Android Studio, press Shift-F10 and click the button that looks like

the one highlighted in the following image:

Hot Reload

Flutter comes with a feature you might know from other frameworks: hot
reload. If you’re not familiar with it, the hot reload feature allows you to update
the app’s current view based on changes you’ve made to the code without
rebuilding the entire app which, as anyone who has ever tried knows, is very
painful when you are making many small changes and trying to see how they
affect the app.

This feature is accessible in both Android Studio and Visual Studio Code and,
actually, also in the command line when you run an app using flutter run: pressing
R in the terminal when that command is running will reload the app.

In Android Studio you need to find an icon like this in the Run menu at the
bottom:

Preface • xiv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

In Visual Studio Code you need to find an icon like this in the menu that
appears at the top of the screen when you start debugging:

The app will immediately reload, showing any changes you’ve made to the
app’s code immediately on the connected emulator or device.

If you’re running a recent version of Android Studio and/or Visual Studio
Code, you’ll have IDE access to two different but similar features: stateful hot
reload and hot restart. The difference between the two is that the stateful hot
reload (as the name implies) preserves each of the State objects and is faster,
but it won’t work with bigger changes that require those to be reloaded too,
and for that there’s hot restart.

When running an app using flutter run from the CLI, stateful hot reload is
associated to the lowercase r character, while hot restart is achieved with the
uppercase R character.

In both IDEs you’ll find, next to the button shown above, a lightning bolt icon
like the one you can see in the following VSCode screenshot:

The lightning bolt performs the stateful hot reload, while the typical restart
icon performs the hot restart.

Updating and Maintaining Your Flutter Installation

You’ll know when you need to update your Flutter SDK installation because
you’ll get a notice whenever you build or run an app.

To update your Flutter installation you need to run the flutter upgrade command,
which will check and download anything that’s needed using Git, so you need
to have Git installed.

Flutter includes a tool called Flutter Doctor, available using the flutter doctor
command, which will list information about the installed Flutter version, the
Android/iOS SDK, the IDE plugins, and connected devices.

Other Flutter-Related Commands in the VSCode Plugins

Once the VSCode Flutter plugin is installed, opening the command palette
and typing flutter will show all available commands.

• Click HERE to purchase this book now. discuss

Installing the SDK and the IDE Plugins • xv

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

Among these you’ll want to get familiar with:

Flutter: Run Flutter Doctor
Check if there are dependencies that need to be installed.

Flutter: New Project
Creates a new Flutter project.

Flutter: Select Device
Select the device on which you want to debug your app.

Flutter: Get Packages and Flutter: Upgrade Packages
Commands for interacting with Flutter Packages (we’ll discuss packages
in Chapter 4).

Where We’re Going Next: Let’s Start Building Apps
Now that you’re set up with all you need to build Flutter apps, we can start
building apps.

You can begin by creating a new Flutter project and familiarizing yourself
with the files generated by the SDK as well as the IDE’s UI for managing
Flutter projects. Once you feel comfortable working with it, you can move on
to the first chapter, in which we’ll learn the structure of a Flutter app and
how to implement it.

Preface • xvi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/czflutr
http://forums.pragprog.com/forums/czflutr

