

Copyright © 2025 Stagira LLC

All rights reserved

No part of this book may be reproduced in any form or by any electronic or

mechanical means including information storage and retrieval systems, without

permission in writing from the author. The only exception is by a reviewer, who may

quote short excerpts in a review.

Contact team@elixirpatterns.dev for regarding errata and support

Alexander Koutmos

Visit my website at https://akoutmos.com

Hugo Baraúna

Visit my website at https://elixir-radar.com

Printed in the United States of America

First Printing: March 2025

Printed by KDP

ISBN 979-83-07689-76-9

mailto:team@elixirpatterns.dev
https://akoutmos.com
https://elixir-radar.com

2.6. Keeping Things Secret with the Crypto

Module

Cryptography in and of itself is a very complex and mathematically involved field.

While we won’t be getting into the weeds as to how the various cryptography

algorithms work, it is important to know what the various tools are in the

cryptography toolbox and when to reach for them. In general, cryptography is all

about secure communication between two or more parties.

The Erlang :crypto module helps us ensure secure communication by providing us

with tools for computing hashes from data, for validating message authentication

codes (MACs), and for encrypting data both symmetrically and asymmetrically. If you

are specifically interested in asymmetric cryptography, be sure to also check out the

Erlang :public_key module
[5]

.

Before diving into the code, let’s unpack what these four groups of tools are and how

we can leverage them in our day to day programming endeavors.

1. Hash functions - Simply put, hash functions can deterministically compute an

output (i.e the same) of a fixed length, regardless of the size of the input. In other

words, given a hash function X, and input data Y you will always get an output of Z

(or if you prefer it as an equation X(Y) = Z). This also means that you cannot

reliably reconstruct the input from the output given that hash functions are one-

way functions and reduce an arbitrary input space into a finite output space. The

fact that these functions work one way is why hash functions are used to store

passwords. In the case of a database leak, the attacker would need to attempt a

large number of permutations in order to find some value that would yield the

same output to log in to someone else’s account.

2. Message Authentication Codes - Message authentication codes, or MACs for short,

allow message senders and recipients to verify that the messages that are shared

are both authentic and have not been tampered with. Given a shared secret key

between the sender and receiver, the two parties can pass a message payload

through a MAC function and generate an authentication code that can be used to

2. Erlang Standard Library Part 2 | 49

verify the message once it is received. One example where this is particularly

useful is when your application supports webhook functionality. The best way to

ensure that the payload that you received has not been tampered with and is

indeed authentic is to have your sending application provide to you their result of

the MAC function and you can compare that to what you compute on your side. If

the two values match then you know that the inbound message can be safely

processed.

3. Symmetric Encryption - Symmetric encryption is probably the category of

cryptographic tools that people most associate with cryptography. With symmetric

cryptography, a message is encrypted with a secret key, at which point it is no

longer discernible what the original message was. In order to derive the original

message, the same secret key must be applied to the encrypted message through a

function that decrypts the encrypted message. If you are encrypting data at rest in

a database, this is generally how it is done. It is encrypted via a symmetric

encryption algorithm and then written to the database.

4. Asymmetric Encryption - Asymmetric encryption is slightly more complicated

than symmetric encryption but equally important. Whereas symmetric encryption

relies on the same key to encrypt/decrypt a piece of data, asymmetric encryption

relies on a pair of keys to encrypt and decrypt messages. One of the keys is known

as the public key which can be freely distributed to anyone without compromising

security. The other key is the private key and this key (as the name implies) should

be kept secret and not distributed. Using the public key, message senders can

encrypt messages and send them to their intended recipients. Only the person who

has the private key can decrypt the message. This way, even if the sender’s

machine is compromised, all the attacker would be able to get access to is the

public key which is not useful in decrypting messages anyways. If you have ever

accessed a website over HTTPS, then you are using asymmetric encryption under

the hood to ensure that your communication with the server is secure.

With an understanding of what these different types of tools are and how they work,

let’s take them for a test drive using the :crypto module.

2. Erlang Standard Library Part 2 | 50

2.6.1. Hash Function

As mentioned earlier, hash functions are one-way functions that produce the same

fixed-length hash for the same input. In the example below we pass a few different

binaries to the hash :crypto.hash/2 function and apply different hash algorithms each

time:

Listing 29. Computing the hash from data

iex(1) > :crypto.hash(:blake2s, "This is some data") ①

...(1) > |> Base.encode16()

"B060EC95F0BEF0F967671AB6A47196685CC241BF3CD329A8DB3A09E253C7CCA9"

iex(2) > :crypto.hash(:blake2s, "This is some other data") ②

...(2) > |> Base.encode16()

"170959DFB421768A00EFDC6C70580C5B473E54691A6E5EF32711D4D102CE8AE8"

iex(3) > :crypto.hash(:sha256, "This is some other data") ③

...(3) > |> Base.encode16()

"07F6BFDB1BC57D898DD8A9022BF01BB581529323071E21337628C3EF6AB29BD1"

① Generate the hash of the data using the :blake2s algorithm

② Using the same algorithm but a different payload, a different hash is generated

③ In this case we generate the hash of the data using :sha256

As you can see, by using the :crypto.hash/2 function we can generate the hash for a

piece of data. In the previous examples, we leveraged the :blake2s and :sha256

algorithms to generate the hash on some strings. Next, let’s take a look at some

different ways to use MACs.

2.6.2. Message Authentication Codes

MACs allow us to validate that a message came from a known source and that the

message has not been tampered with. They are able to do this given that the sender

and receiver share a secret key and when the key is applied to the message, an equal

2. Erlang Standard Library Part 2 | 51

hash should be generated. Let’s take this for a test drive for a better understanding:

Listing 30. MAC helper functions

iex(1) > generate_hmac = fn secret_key, payload -> ①

...(1) > :hmac

...(1) > |> :crypto.mac(:sha256, secret_key, payload)

...(1) > |> Base.encode64()

...(1) > end

#Function<43.65746770/2 in :erl_eval.expr/5>

iex(2) > validate_hmac = fn your_key, payload, expected_hash -> ②

...(2) > :hmac

...(2) > |> :crypto.mac(:sha256, your_key, payload)

...(2) > |> Base.encode64()

...(2) > |> Kernel.==(expected_hash)

...(2) > end

#Function<42.65746770/3 in :erl_eval.expr/5>

① The generate_hmac helper function will generate a MAC hash using the SHA256

algorithm

② The validate_hmac helper function will check to see if the secret key provided yields

the expected MAC hash

Let’s leverage these helper functions by running some data through them and

checking to see what happens when we attempt to validate the data payload:

Listing 31. Validate data integrity with a MAC

iex(3) > payload = :erlang.term_to_binary(%{some: "Data", i: "Need"}) |>

Base.encode64()

"g3QAAAACZAABaW0AAAAETmVlZGQABHNvbWVtAAAABERhdGE=" ①

iex(4) > secret_key = "this_is_a_secret_and_secure_key" ②

"this_is_a_secret_and_secure_key"

2. Erlang Standard Library Part 2 | 52

iex(5) > correct_hmac_hash = generate_hmac.(secret_key, payload)

"gp1QB0rWy4m5DDoDBqZU4hwyVhBdwMXc0gnGELup1Ow="

iex(6) > validate_hmac.("INVALID KEY", payload, correct_hmac_hash) ③

false

iex(7) > validate_hmac.(secret_key, payload, correct_hmac_hash) ④

true

① Here we serialize some data using :erlang.term_to_binary/1

② We set the correct secret key to this_is_a_secret_and_secure_key

③ Given an invalid key, the validate_hmac/3 function returns false

④ Given a valid key, the validate_hmac/3 function return true

At first glance, it may seem as though this type of cryptography tooling does not

provide a lot of utility when all the data you are working with is local to the machine.

Once you consider transmitting data on the public internet, then this becomes far

more useful. For example, APIs as a service such as Stripe
[6]

 and Twilio
[7]

 leverage

MACs in order to give you the assurance that the data you are operating on is

authentic and has not been tampered with. Now that you have a good understanding

of how MACs work, let’s take a look at symmetric encryption.

2.6.3. Symmetric Encryption

Symmetric encryption is usually what comes to mind when people talk about

cryptography. With symmetric encryption, a secret key is required both to encrypt

and decrypt messages. Full disk encryption usually relies on symmetric encryption to

secure data at rest on the disk and when it comes time to read data off the disk, you

must provide the same secret key. Let’s see how we can do this using the Erlang

:crypto module. First we’ll create a couple of helper functions in order to make the

code more concise:

2. Erlang Standard Library Part 2 | 53

Listing 32. Helper functions to encrypt and decrypt

iex(1) > encrypt =

...(1) > fn message, key ->

...(1) > opts = [encrypt: true, padding: :zero] ①

...(1) > :crypto.crypto_one_time(:aes_256_ecb, key, message, opts)

...(1) > end

#Function<43.65746770/2 in :erl_eval.expr/5>

iex(2) > decrypt =

...(2) > fn payload, key ->

...(2) > opts = [encrypt: false] ②

...(2) >

...(2) > :aes_256_ecb

...(2) > |> :crypto.crypto_one_time(key, payload, opts)

...(2) > |> String.trim(<<0>>) ③

...(2) > end

#Function<43.65746770/2 in :erl_eval.expr/5>

① When we encrypt data, we need to be sure that we pass the encrypt: true option.

In addition, we need to pad the message using the padding: :zero option to ensure

that our data does not get trimmed because it is not a block size aligned payload.

② When we decrypt the payload, we need to pass the encrypt: false value to signal to

the :crypto.crypto_one_time/4 function that we want to decrypt.

③ Given that we padded the encrypted payload, we also need to trim any trailing null

bytes.

With our helper functions in place, we can start to leverage them and see what we get

back:

Listing 33. Symmetrically encrypting and decrypting data

iex(3) > message = "This is a very very important message. Keep it

secret...keep safe"

"This is a very very important message. Keep it secret...keep safe" ①

2. Erlang Standard Library Part 2 | 54

iex(4) > secret_key = :crypto.strong_rand_bytes(32) ②

<<97, 176, 26, 172, 231, ...>>

iex(5) > encrypted_message = encrypt.(message, secret_key) ③

<<219, 216, 102, 130, 75, ...>>

iex(6) > try do

...(6) > decrypt.(encrypted_message, "INVALID_KEY") ④

...(6) > rescue

...(6) > error -> error

...(6) > end

%ErlangError{original: {:badarg, {'api_ng.c', 244}, 'Bad key size'}}

iex(7) > decrypt.(encrypted_message, :crypto.strong_rand_bytes(32)) ⑤

<<194, 121, 32, 55, 79, 163, ...>>

iex(8) > decrypt.(encrypted_message, secret_key) ⑥

"This is a very very important message. Keep it secret...keep safe"

① This is the information that we would like to keep secret

② Using :crypto.strong_rand_bytes/1 we are able to generate a 32 byte secret key

③ Using our secret key and the original message we encrypt it

④ Providing a key of the wrong length yields an error

⑤ providing a key of the correct size but incorrect value yields random data

⑥ Using the encrypted data and the secret key, we can derive the original message

As you can see, it is relatively straightforward to encrypt and decrypt data using the

:crypto.crypto_one_time/4 function. One thing that should be noted is the value of the

last argument to the function. Be sure that you flip the :encrypt boolean accordingly

and also set the :padding option or else your data will be truncated to fit in the cipher’s

block (if you are using a block cipher like :aes_256_ecb). Aside from that, just make

sure that your key is the correct size and that you do not lose the key as you won’t be

2. Erlang Standard Library Part 2 | 55

able to recover your data.

Asymmetric encryption is a bit more complicated and out of scope for this book. If you

are interested in the topic though, I would suggest looking at the Erlang Getting

Started guide for public key encryption
[8]

.

2.7. What’s Next?

While we covered quite a bit of the Erlang standard library in chapters 1 and 2, there

are still plenty of gems that are useful in your day-to-day programming that we did

not cover here. We urge you to dive into the Erlang docs
[9]

 and do some exploring. You

may be surprised by what you find!

With a solid overview of the Erlang standard library, it’s time to shift our focus to the

Elixir standard library. Similar to the Erlang standard library, there is quite a bit in the

Elixir standard library. So instead of going over every function in the Enum or Map

module, we’ll be looking at useful ways to compose functions from these modules in

order to perform various tasks. With that being said, let’s jump right to it!

2. Erlang Standard Library Part 2 | 56

[1] https://en.wikipedia.org/wiki/Graph_(abstract_data_type)

[2] https://www.erlang.org/doc/man/erpc.html

[3] https://www.erlang.org/doc/apps/erts/match_spec.html

[4] https://www.erlang.org/doc/man/dets.html

[5] https://www.erlang.org/doc/man/public_key.html

[6] https://stripe.com/docs/webhooks/signatures

[7] https://www.twilio.com/docs/usage/security

[8] https://www.erlang.org/doc/apps/public_key/using_public_key.html

[9] https://www.erlang.org/doc

2. Erlang Standard Library Part 2 | 57

https://en.wikipedia.org/wiki/Graph_(abstract_data_type
https://www.erlang.org/doc/man/erpc.html
https://www.erlang.org/doc/apps/erts/match_spec.html
https://www.erlang.org/doc/man/dets.html
https://www.erlang.org/doc/man/public_key.html
https://stripe.com/docs/webhooks/signatures
https://www.twilio.com/docs/usage/security
https://www.erlang.org/doc/apps/public_key/using_public_key.html
https://www.erlang.org/doc

	Elixir Patterns: The essential BEAM handbook for the busy developer
	Table of Contents
	Introduction
	What You Will Learn
	Who is This Book for

	Part 1
	1. Erlang Standard Library Part 1
	1.1. Introduction
	1.2. What Are Immutable Data Structures
	1.3. Using Queues in Erlang
	1.4. The Many Set Implementations in Erlang
	1.5. Arrays…​in Erlang?
	1.6. Using the Erlang Module for Everyday Tasks
	1.7. What’s Next?

	2. Erlang Standard Library Part 2
	2.1. Introduction
	2.2. Directed Graphs with the Digraph Module
	2.3. Fast Incrementers with Atomics and Counters
	2.4. Blazing Fast Data Reads with Persistent Term
	2.5. Using ETS and DETS for General Purpose Data Storage
	2.6. Keeping Things Secret with the Crypto Module
	2.7. What’s Next?

	3. The Elixir Standard Library
	3.1. Introduction
	3.2. Enum Module
	3.3. Stream Module
	3.4. What’s Next

	Part 2
	4. Agents, Tasks and GenServers
	4.1. Introduction
	4.2. Agent Module
	4.3. Process Introspection
	4.4. Task Module
	4.5. A GenServer Deep Dive
	4.6. Testing Named GenServers
	4.7. What’s Next?

	5. Orchestrating Supervisors and GenServers
	5.1. Introduction
	5.2. What is a Supervisor?
	5.3. Elixir and OTP Building Blocks
	5.4. The Lifecycle of Supervisors and Processes
	5.5. Data Buffering Supervision Tree
	5.6. Scaling Up With PartitionSupervisor
	5.7. What’s Next?

	6. Supervisor Initialization Patterns
	6.1. Introduction
	6.2. When Can I Use Initialization Processes?
	6.3. Running Asynchronous Initialization Jobs
	6.4. Running Synchronous Initialization Jobs
	6.5. Conditionally Starting GenServers via Config
	6.6. What’s Next?

	7. Advanced GenServer Recipes
	7.1. Introduction
	7.2. Building a Rate Limiter
	7.3. Building a Work Delegation Supervision Tree
	7.4. What’s Next?

	8. Scalable Actor Model and the Adapter Pattern
	8.1. Introduction
	8.2. Scalable Actor Model Architecture with Caching Support
	8.3. The Adapter Pattern
	8.4. What’s next?

	Thank you!
	Index

