

Copyright © 2025 Stagira LLC

All rights reserved

No part of this book may be reproduced in any form or by any electronic or

mechanical means including information storage and retrieval systems, without

permission in writing from the author. The only exception is by a reviewer, who may

quote short excerpts in a review.

Contact team@elixirpatterns.dev for regarding errata and support

Alexander Koutmos

Visit my website at https://akoutmos.com

Hugo Baraúna

Visit my website at https://elixir-radar.com

Printed in the United States of America

First Printing: March 2025

Printed by KDP

ISBN 979-83-07689-76-9

mailto:team@elixirpatterns.dev
https://akoutmos.com
https://elixir-radar.com

6. Supervisor

Initialization Patterns

6.1. Introduction

Now that you have had the chance to experiment with the Supervisor and

PartitionSupervisor modules, it is time to dive into some of the more advanced Elixir

process orchestration tools available to you in Elixir. To start, you’ll learn how you can

use GenServers in order to perform initialization tasks for your application and

supervision trees. You will learn how you can perform these initialization tasks in

both a synchronous and asynchronous fashion and where each technique is

applicable. Finally, we will cover how you can conditionally start your GenServer

processes depending on the run-time configuration so you can have fine-grained

control over what processes are started.

Before diving into the code, let’s first discuss in what situations these techniques are

useful and the various ways that we can go about solving these problems using the

tools available to us in OTP.

6.2. When Can I Use Initialization Processes?

Supervision tree initialization processes are useful in a wide array of scenarios when

you need to perform some unit of work as part of the supervision tree startup. If you

recall from previous chapters, it is important to think of supervision trees as a way to

bundle related components of your application together so that they can act as a

cohesive unit.

To that end, it is often useful to initialize resources, or perform some set up prior to

6. Supervisor Initialization Patterns | 161

certain processes starting in your supervision tree. This can include hydrating state

inside of :persistent_term, ETS, making HTTP calls, firing off :telemetry events, etc.

Whatever your specific need may be, it is often necessary that you perform some unit

of work prior to your supervision tree continuing its start-up procedure.

Luckily, Elixir and the BEAM provide a few options for performing startup operations

for your supervision trees and applications. We’ll cover how you can asynchronously

emit a telemetry event using the Task module as part of the startup of a supervision

tree. This pattern is useful when the initialization work you need to perform is

independent from any other processes in your supervision tree. In other words, the

other processes in your supervision tree do not depend on the side effects produced

by this initialization job.

Let’s jump into the code and see what an asynchronous initialization job looks like.

6.3. Running Asynchronous Initialization Jobs

In this example, we will be creating a simple supervision tree, and as part of the

initialization process of the supervision tree, we will emit a telemetry event. This

telemetry event will contain the information passed to the supervision tree, which can

then be used by telemetry consumers to log important information.

As an aside for those unfamiliar with the Telemetry library, it is a simple (and widely

used) solution for dynamically emitting/subscribing to application and library events.

For example, Ecto and Phoenix leverage the Telemetry library in order to emit metrics

and metadata related to database queries and HTTP requests. These metrics and

metadata contain things such as timings for requests, the database table that was

acted upon, the Phoenix route that was requested and other pieces of information

related to the action performed by the libraries.

While we are using the Telemetry library for emitting events in this example, the

work that you perform can vary depending on the problem that you are trying to

solve. We have seen this technique used for notifying service orchestration platforms

that the application is up and running, sending an event to a monitoring system that

6. Supervisor Initialization Patterns | 162

the application has successfully started, and several other instances where we need to

perform some sort of side effect asynchronously.

That said, let’s put together a simple supervision tree that starts a couple of processes

and finally fires off an asynchronous Task to let event subscribers know that the

supervision tree initialization is complete. We’ll start by defining the modules

associated with the supervision tree and then define the supervision tree.

Listing 97. Simple GenServer implementation

defmodule SimpleGenServer do

 use GenServer

 def start_link(name) do

 GenServer.start_link(__MODULE__, name, name: name)

 end

 def child_spec(init_arg) do ①

 Supervisor.child_spec(

 %{

 id: init_arg,

 start: {__MODULE__, :start_link, [init_arg]}

 },

 []

)

 end

 @impl true

 def init(state) do ②

 IO.puts("Starting GenServer: #{state}")

 {:ok, state}

 end

end

① We override the autogenerated GenServer child_spec/1 implementation to control

6. Supervisor Initialization Patterns | 163

the :id value for the GenServer process.

② We output the name of the GenServer to see when and what processes start.

This simple GenServer provides us a basic process that we can add to our example

supervision tree without doing much work beyond that. The internals of the

GenServer are not necessarily important here, as we simply need a process to start.

Next, let’s create a Task module responsible for emitting our init event via :telemetry.

Listing 98. Telemetry Task module implementation

defmodule InitTelemetryTask do

 use Task

 def start_link(metadata) do

 Task.start_link(__MODULE__, :run, [metadata]) ①

 end

 def run(metadata) do ②

 IO.puts("Running Telemetry Task")

 metrics = %{system_time: System.system_time()}

 :telemetry.execute(init_event(), metrics, metadata) ③

 end

 def init_event do ④

 [:simple, :supervisor, :init]

 end

 def simple_handler(_event_name, measurements, metadata, _config) do ⑤

 IO.puts("Measurements: #{inspect(measurements)}")

 IO.puts("Metadata: #{inspect(metadata)}")

 end

end

① We specify that we want to execute the run/1 function in this module when the

6. Supervisor Initialization Patterns | 164

Task is started.

② Output that the function has been invoked and emits the configured telemetry

event.

③ Using the :telemetry.execute/3 function, we can emit an event with the signature

defined in init_event/0.

④ We put the signature of the Telemetry event in a function so that the source of

truth for the event signature is the module that emits the event.

⑤ Our Telemetry event handler simply output the metadata and measurements

associated with the event.

We begin the InitTelemetryTask module by making use of the use Task macro. This

macro will automatically generate a child_spec/1 function in the module so that we

can easily add it to our supervision tree. We then define a start_link/1 function that

starts the process and passes through all the provided metadata we want as part of

the telemetry event. We also pass to Task.start_link/3 the name of the function that

we want to execute (in this case :run). In the run/1 function, we then call

:telemetry.execute/3, which will broadcast the event defined in the init_event/0

function.

Best practices for using :telemetry

As an aside, it makes it easier to refactor and change your telemetry

event signatures if they are defined in a function and co-located with

the modules that broadcast the event. This way, telemetry event

consumers can call your function in order to get the correct

signature, and you do not have hard-coded event signatures

scattered throughout your codebase.

With that in place, it is time to put together our supervision tree that will start three

GenServer processes and also invoke our telemetry Task module.

Listing 99. Supervisor implementation with async initialization process

defmodule SimpleSupervisor do

6. Supervisor Initialization Patterns | 165

 use Supervisor

 def start_link(init_arg) do

 Supervisor.start_link(__MODULE__, init_arg, name: __MODULE__)

 end

 @impl true

 def init(init_arg) do

 IO.puts("Starting SimpleSupervisor")

 init_task_meta = %{ ①

 init_args: init_arg,

 pid: self()

 }

 children = [②

 {SimpleGenServer, :gen_server_one},

 {SimpleGenServer, :gen_server_two},

 {SimpleGenServer, :gen_server_three},

 {InitTelemetryTask, init_task_meta}

]

 Supervisor.init(children, strategy: :one_for_one)

 end

end

① Here, we collect all of the metadata associated with the initialization of the

SimpleSupervisor supervision tree for use by our Telemetry event handler.

② We start three instances of the SimpleGenServer process and then asynchronously

start the InitTelemetryTask process , which emits the Telemetry event containing

the metadata around how the supervision tree was initialized.

The SimpleSupervisor module we defined here is fairly basic and should look similar

to the supervision trees defined in the previous chapters. The only thing that is

slightly different this time around is that we create a map of metadata related to the

6. Supervisor Initialization Patterns | 166

starting of the supervision tree and then pass it to the InitTelemetryTask child process.

We can add our InitTelemetryTask module to the child process list, since the use Task

macro automatically generates a child_spec/1 function.

With that in place, we can start up the supervision tree and see what our output looks

like. You’ll notice that the various modules that we defined have print statements. This

will help you see the order of how/when things are started.

Listing 100. Starting the SimpleSupervisor

iex(1) > :telemetry.attach(①

...(1) > :init_handler,

...(1) > InitTelemetryTask.init_event(),

...(1) > &InitTelemetryTask.simple_handler/4,

...(1) > nil

...(1) >)

:ok

iex (2) > SimpleSupervisor.start_link([]) ②

Starting SimpleSupervisor

Starting GenServer: gen_server_one

Starting GenServer: gen_server_two

Starting GenServer: gen_server_three

Running Telemetry Task

{:ok, #PID<0.834.0>}

Measurements: %{system_time: 1704236516451483038}

Metadata: %{pid: #PID<0.834.0>, init_args: []}

① Attach a telemetry handler to the init event. Note that we are using the

InitTelemetryTask.init_event/0 function to get the signature of the event as

opposed to typing it out.

② Start the SimpleSupervisor supervision tree to start the three GenServer processes

and the single Task process.

You may have expected the start_link/1 result of {:ok, #PID<0.834.0>} to be returned

6. Supervisor Initialization Patterns | 167

after to the printing of the Telemetry event data, given that the Telemetry events are

dispatched synchronously. The reason that the supervisor PID is returned prior to the

telemetry handler being invoked is that we are using the Task module to execute the

Telemetry event, and whenever we run Tasks this way, they are executed

asynchronously.

Another subtle thing that should be pointed out with this async init Task pattern is the

order in which the Task module appeared in the child process list. In this particular

case, we want to emit the Telemetry event only if all the other processes in the

supervision tree successfully started. If any of the child processes in the supervision

tree failed to start, then the Task process (which is last in the list) will not be started.

This means that you need to carefully consider where your Task process is slotted into

your supervision tree so that you do not falsely report things that may not be true if

subsequent processes fail to start and block the supervision tree from starting.

To be clear, if the Task you are running does not have this type of dependency or

constraint on the other processes in the supervision tree, you can run it at any point

and execute asynchronously as the other processes are starting up. Like many things

in software engineering, your specific structure will depend on your specific problem.

Luckily, Elixir and OTP are flexible enough to accommodate these different use cases.

6.3.1. Visualizing the Supervision Tree Startup Process

In order to visualize how this supervision tree is started and when the various

processes under the supervisor perform their work, it is best to visualize the messages

between the processes using a sequence diagram.

6. Supervisor Initialization Patterns | 168

Figure 8. Sequence diagram from starting SimpleSupervisor

As you can see, the three GenServer processes (gen_server_one, gen_server_two, and

gen_server_three) are started, and then the InitTelemetryTask module is spawned

before the SimpleSupervisor returns an ack to the process that started the

SimpleSupervisor supervisor. After the InitTelemetryTask process is started, it then

proceeds to output three things (as seen by three io_request/io_reply pairs). After that,

the InitTelemetryTask process terminates all the while the SimpleSupervisor continues

running.

As you can see, with the Task initialization process pattern it is pretty easy to execute

some amount of work out of band with the rest of the supervision tree initialization

6. Supervisor Initialization Patterns | 169

	Elixir Patterns: The essential BEAM handbook for the busy developer
	Table of Contents
	Introduction
	What You Will Learn
	Who is This Book for

	Part 1
	1. Erlang Standard Library Part 1
	1.1. Introduction
	1.2. What Are Immutable Data Structures
	1.3. Using Queues in Erlang
	1.4. The Many Set Implementations in Erlang
	1.5. Arrays…in Erlang?
	1.6. Using the Erlang Module for Everyday Tasks
	1.7. What’s Next?

	2. Erlang Standard Library Part 2
	2.1. Introduction
	2.2. Directed Graphs with the Digraph Module
	2.3. Fast Incrementers with Atomics and Counters
	2.4. Blazing Fast Data Reads with Persistent Term
	2.5. Using ETS and DETS for General Purpose Data Storage
	2.6. Keeping Things Secret with the Crypto Module
	2.7. What’s Next?

	3. The Elixir Standard Library
	3.1. Introduction
	3.2. Enum Module
	3.3. Stream Module
	3.4. What’s Next

	Part 2
	4. Agents, Tasks and GenServers
	4.1. Introduction
	4.2. Agent Module
	4.3. Process Introspection
	4.4. Task Module
	4.5. A GenServer Deep Dive
	4.6. Testing Named GenServers
	4.7. What’s Next?

	5. Orchestrating Supervisors and GenServers
	5.1. Introduction
	5.2. What is a Supervisor?
	5.3. Elixir and OTP Building Blocks
	5.4. The Lifecycle of Supervisors and Processes
	5.5. Data Buffering Supervision Tree
	5.6. Scaling Up With PartitionSupervisor
	5.7. What’s Next?

	6. Supervisor Initialization Patterns
	6.1. Introduction
	6.2. When Can I Use Initialization Processes?
	6.3. Running Asynchronous Initialization Jobs
	6.4. Running Synchronous Initialization Jobs
	6.5. Conditionally Starting GenServers via Config
	6.6. What’s Next?

	7. Advanced GenServer Recipes
	7.1. Introduction
	7.2. Building a Rate Limiter
	7.3. Building a Work Delegation Supervision Tree
	7.4. What’s Next?

	8. Scalable Actor Model and the Adapter Pattern
	8.1. Introduction
	8.2. Scalable Actor Model Architecture with Caching Support
	8.3. The Adapter Pattern
	8.4. What’s next?

	Thank you!
	Index

