


Copyright © 2025 Stagira LLC

All rights reserved

No part of this book may be reproduced in any form or by any electronic or

mechanical means including information storage and retrieval systems, without

permission in writing from the author. The only exception is by a reviewer, who may

quote short excerpts in a review.

Contact team@elixirpatterns.dev for regarding errata and support

Alexander Koutmos

Visit my website at https://akoutmos.com

Hugo Baraúna

Visit my website at https://elixir-radar.com

Printed in the United States of America

First Printing: March 2025

Printed by KDP

ISBN 979-83-07689-76-9

mailto:team@elixirpatterns.dev
https://akoutmos.com
https://elixir-radar.com


Introduction

Hello and welcome to Elixir Patterns! Before we begin, we would like to thank you for

your support. Writing and publishing a book is an immense undertaking, and it is

great to know that you decided to read this particular book when there are so many

great publications out there. Thank you! With that being said, we would like to discuss

some of the motivations that led to this book as it will give you a sense for why it

exists and how you can leverage it.

If you have ever programmed in an Object Oriented Programming language before,

you have most likely heard of (or even used) some Object Oriented design patterns.

Things like the Factory pattern, the Adapter pattern, the Singleton pattern, and the

Builder pattern, to name a few. While most of these patterns are not necessarily

applicable to Functional Programming languages, the idea of having a "go-to" toolbox

of patterns that you can leverage is an enticing idea. Often times, these design

patterns are inherently abstract, and do not aim to leverage any of the unique

properties of any specific run-time or language. As such, it can sometimes be difficult

to know what patterns to use in certain circumstances.

Given that this book will be focusing on Elixir and the Erlang virtual machine, we will

take a slightly different approach to design patterns. Specifically, this book aims to

surface the powerful and unique characteristics of the Erlang virtual machine (or

BEAM for short) and show you how you can go about solving every day problems in a

simple yet scalable way.

Not only will you learn how to better leverage the tools that are at your disposal

courtesy of Erlang and the BEAM, but you will also learn how to better utilize

Functional Programming in order to achieve your goals in a clear and concise way.

Introduction | 1



What You Will Learn

In the first few chapters you will learn about the Erlang and Elixir standard libraries

and useful ways that they can be used. This will include covering some of the data

structure modules that are available to you via Erlang and some other utility modules

that can come in handy in certain situations. You’ll then be introduced to a handful of

Elixir modules, and you’ll learn about some clever ways that they can be used. Some

of these modules include the Task, Enum and Stream modules.

Once you have a good sense for the Elixir and Erlang fundamentals, you’ll get into the

meat and potatoes of the book and learn about processes, GenServers, Supervisors

and how they work exactly. After you have a good grasp on how to write and

incorporate GenServers into your application, you’ll learn about some common

patterns and when to reach for these patterns when you write your own applications.

After that, we’ll go over how to package Elixir applications into a release and how to

ensure that our GenServers and applications are configured properly. Specifically,

we’ll go over how we can configure our various resources depending on the running

environment and how we can leverage the Adapter pattern to swap out module

implementations as needed.

Who is This Book for

In order to get the most out of this book, it is recommended that you have some

familiarity with Elixir and understand the basics of the BEAM. If you need a refresher

on the Elixir programming language or are new to it, we would recommend taking a

look at the Elixir Getting Started Guide (https://elixir-lang.org/getting-started/

introduction.html) prior to diving into this book.

With that being said, we think we’re ready to begin! Without further ado let’s dive

into the Erlang standard library and learn how we can leverage it even when

programming with Elixir.

Introduction | 2

https://elixir-lang.org/getting-started/introduction.html
https://elixir-lang.org/getting-started/introduction.html

	Elixir Patterns: The essential BEAM handbook for the busy developer
	Table of Contents
	Introduction
	What You Will Learn
	Who is This Book for

	Part 1
	1. Erlang Standard Library Part 1
	1.1. Introduction
	1.2. What Are Immutable Data Structures
	1.3. Using Queues in Erlang
	1.4. The Many Set Implementations in Erlang
	1.5. Arrays…​in Erlang?
	1.6. Using the Erlang Module for Everyday Tasks
	1.7. What’s Next?

	2. Erlang Standard Library Part 2
	2.1. Introduction
	2.2. Directed Graphs with the Digraph Module
	2.3. Fast Incrementers with Atomics and Counters
	2.4. Blazing Fast Data Reads with Persistent Term
	2.5. Using ETS and DETS for General Purpose Data Storage
	2.6. Keeping Things Secret with the Crypto Module
	2.7. What’s Next?

	3. The Elixir Standard Library
	3.1. Introduction
	3.2. Enum Module
	3.3. Stream Module
	3.4. What’s Next


	Part 2
	4. Agents, Tasks and GenServers
	4.1. Introduction
	4.2. Agent Module
	4.3. Process Introspection
	4.4. Task Module
	4.5. A GenServer Deep Dive
	4.6. Testing Named GenServers
	4.7. What’s Next?

	5. Orchestrating Supervisors and GenServers
	5.1. Introduction
	5.2. What is a Supervisor?
	5.3. Elixir and OTP Building Blocks
	5.4. The Lifecycle of Supervisors and Processes
	5.5. Data Buffering Supervision Tree
	5.6. Scaling Up With PartitionSupervisor
	5.7. What’s Next?

	6. Supervisor Initialization Patterns
	6.1. Introduction
	6.2. When Can I Use Initialization Processes?
	6.3. Running Asynchronous Initialization Jobs
	6.4. Running Synchronous Initialization Jobs
	6.5. Conditionally Starting GenServers via Config
	6.6. What’s Next?

	7. Advanced GenServer Recipes
	7.1. Introduction
	7.2. Building a Rate Limiter
	7.3. Building a Work Delegation Supervision Tree
	7.4. What’s Next?

	8. Scalable Actor Model and the Adapter Pattern
	8.1. Introduction
	8.2. Scalable Actor Model Architecture with Caching Support
	8.3. The Adapter Pattern
	8.4. What’s next?


	Thank you!
	Index

