

The Curious Case Of The Async Cafe

An Introduction To

Modern Concurrency In Swift

by Daniel H Steinberg

Editors Cut

Copyright

"The Curious Case of the Async Cafe", by Daniel H Steinberg

Copyright © 2023 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-04-4

Book Version

This is version 0.5 for Swift 5.7, Xcode 14.2, macOS Ventura 13.0, and iOS 16.1 released

February 2023. All code has been tested on Apple Silicon.

Code Download

Visit https://github.com/editorscut/ec013Async for all of the code
for this book.

Run it in Xcode 14.2 or higher. All code is written in Swift.

To avoid long lines and code that wraps, I've split some lines in
code listings in ways that you might not in an IDE. Please feel free to
not break the lines where I have.

Recommended Settings

The ePub is best viewed in scrolling mode on an iPad. On smaller
devices I also choose landscape. For some reason that I don't
understand, scrolling mode is supported by Apple's Books app on

https://github.com/editorscut/ec013Async

the iPad but not on the Mac. If you view this book in Apple's Books
app, choose "Let lines break naturally" in Preferences > General.
Finally, I've gone to great pains to make this look good in light and
dark mode but Apple has foiled me yet again. I'm told that not all of
the syntax coloring works in dark mode.

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

https://github.com/editorscut/ec013Async/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

Table Of Contents

Table Of Contents
Chapter 3: AsyncSequences and AsyncStreams

AsyncAlgorithms

CHAPTER 3

AsyncSequences And
AsyncStreams

Sections: Notifications
Introducing AsyncStream
Sequences of Notifications
Sendable and Actor Boundaries
Transforming AsyncSequences
Sequence Pipelines
Combine
AsyncStream Continuations
Continuous Delivery
AsyncAlgorithms

We ended the previous chapter with an example of a URLSession

data task. This is an asynchronous call that can fail and only returns
once. We start this chapter with the example of NotificationCenter.

We register to listen for a notification and can get zero or many calls
over time.

This is our introduction to AsyncSequences and an easy to use

concrete implementation called an AsyncStream.

We iterate these sequences using an asynchronous version of a for

loop in which we await the next element in the asynchronous

sequence.

We construct and use these in many different ways and use built in
methods such as filter() and map() to transform the AsyncSequence.

We finish the chapter with a Swift Package that is outside of the
Swift Standard Library named AsyncAlgorithms that is filled with types

and functions that allow us to combine AsyncSequences and work with

them in other important ways.

We begin with a familiar look at Notifications and

NotificationCenter.

CHAPTER 3 : SECTION 10

AsyncAlgorithms

"Edges," I hissed, gesturing, "the magician is back."

Edges nodded and we watched as the magician placed two steaming
cups of coffee in front of us.

The steam turned to smoke. When the smoke cleared the cups were
gone and each of our napkins was half light yellow and half pale
purple.

The miniature train appeared beside our table with an apple fritter on
the light yellow car and a chocolate eclair on the pale purple car.

The magician took out four domes and covered each of the pastries
and each of our napkins.

Edges understood that the trick was already complete and looked to
the magician for permission. The magician nodded and as the train
returned to the kitchen, Edges lifted the domes in front of each of us
to reveal that we each had a plate with half an apple fritter and half an
eclair.

A train with an endless supply of pastries and a magician who can
transform them.

It can't get any better than this, I thought.

As if reading my mind, Edges said softly, "Enjoy, my friend. This is the
end of endless pastry at the Async Cafe."

The Swift team has made an interesting choice. AsyncSequence,

AsyncStream, and others have been added as part of the Swift

Standard Library. AsyncSequence includes ways of transforming the

sequence including dropFirst(), filter(), map(), and so on.

There are, however, many things missing that we might want. There
are time based operations such as debounce() and throttle(). There

are methods for combining asynchronous sequences that we might
want to see such as zip(), merge(), or combineLatest(). There are also

utilities that we might be missing such as compacted(),

removeDuplicates(), and interspersed().

All of these methods and more are contained in a Swift Package
named AsyncAlgorithms.

In this section we explore some of the methods in AsyncAlgorithms.

Continue with our current project or start with the project in
Chapter03/09/.

The set up

Let's do a little cleanup and preparation.

Remove the second EntryGrid from MainView.

SmoreNmore/Views/MainView.swift

extension MainView: View {
 var body: some View {
 NavigationStack {
 VStack {
 EntryGrid(entries: controller.entries)
 EntryGrid(entries: controller.entries2)
 // EntryPairGrid(entryPairs: controller.entryPairs)
 }
 .padding()
 .navigationTitle("Entries")
 .navigationBarTitleDisplayMode(.inline)
 }
 }
}

Remove entries2 and listenForEntries2() from EntryController.

SmoreNmore/Controllers/EntryController.swift

import Combine

@MainActor
class EntryController: ObservableObject {
 @Published private(set) var entries: [Entry] = []
 @Published private(set) var entries2: [Entry] = []
 @Published private(set) var entryPairs: [EntryPair] = []

 private let plain = AutoEntryVendor(delay: 2.0)
 private let filled = AutoEntryVendor(delay: 1.5,
 isFilled: true)

 init() {
 Task {
 await listenForEntries()
 }
 Task {
 await listenForEntries2()
 }
 }
}

extension EntryController {
 private func listenForEntries() async {
 for await entry in plain.entries {
 entries.append(entry)
 }
 }
 private func listenForEntries2() async {
 for await entry in filled.entries {
 entries2.append(entry)
 }
 }
}

Add AsyncAlgorithms

To add the AsyncAlgorithms package choose the menu item File >

Add Packages. Search using the term async-algorithms or use the
url https://github.com/apple/swift-async-algorithms. Tap Add

Package.

After a moment you will see this window which asks you which of
the four packages you want to add. Check the top one
AsyncAlgorithms and again tap Add Package.

To confirm that the package has been added you should see it
listed under Package Dependencies in the Project Navigator. Also if
you select the target and look at the General tab, you should see it

listed under Frameworks, Libraries, and Embedded Content.

This is important. Every once in a while there's an issue with adding
the package and it doesn't show up in Frameworks, Libraries, and
Embedded Content. If it doesn't, then tap the + for that section and
add the package to the project manually.

Run the app. The first ten numbers should appear in plain Entrys as

before.

AsyncTimerSequence

Let's refactor our AsyncStream in AutoEntryVendor using

AsyncTimerSequence from the AsyncAlgorithms package.

We can create an AsyncTimerSequence that fires after a specified

duration. So we can use it to fire every two seconds instead of
sleeping a Task for two seconds in a while loop.

We can still finish() the Task when count reaches some specified

amount. Let's increase that amount to 20.

Here's the modified entries stream.

SmoreNmore/Controllers/AutoEntryVendor.swift

import AsyncAlgorithms

class AutoEntryVendor {
 let delay: Double
 let isFilled: Bool
 private var count = 0

 init(delay: Double,
 isFilled: Bool = false) {
 self.delay = delay
 self.isFilled = isFilled
 }

 lazy private(set) var entries
 = AsyncStream(Entry.self) { continuation in
 let timer
 = AsyncTimerSequence.repeating(every: .seconds(delay))

 Task {
 for await _ in timer {
 if count < 20 {
 count += 1
 try? await Task.sleep(for: .seconds(delay))
 continuation.yield(Entry(number: count,
 isFilled: isFilled))
 } else {
 continuation.finish()
 }
 }
 }
 }
}

Run the app. It runs as before except this time the numbers go up
to 20.

Merge

If we have two sequences in which the type of elements are the
same, we can merge them into a single sequence using the merge()

function from AsyncAlgorithms.

As you saw earlier in this chapter, the type of the resulting sequence
is not so simple. We'd like to merge two AsyncSequences of Entrys

and get an AsyncSequence of Entrys. The result of merge() is an

AsyncMerge2Sequence that is generic in the two types of sequences it

merges.

Oh one more note before we take it for a spin. Note that it's an
AsyncMerge2Sequence. There is a variation of merge() that accepts three

sequences and produces an AsyncMerge3Sequence.

Let's use merge() to merge the elements from plain.entries and

filled.entries.

SmoreNmore/Controllers/EntryController.swift

import Combine
import AsyncAlgorithms
// ...
extension EntryController {
 private func listenForEntries() async {
 for await entry in merge(plain.entries,
 filled.entries) {
 entries.append(entry)
 }
 }
}

Run the app. The filled.entries are emitted every 1.5 seconds

while the plain.entries arrive every 2 seconds. We should see a

filled Entry first followed by a plain one. They will alternate until the

times line up so that we get two filled Entrys before the next plain

Entry arrives.

I see something like this in the simulator.

The filled ones are exhausted first so at the end we get the
remaining plain Entrys.

Let's mess around with the timing a little more.

Throttle

Sometimes we need to adjust the rate at which elements are being
emitted by a sequence so we don't get an "I Love Lucy" chocolate
factory situation (look it up if you don't know the iconic episode
from more than 70 years ago).

The easiest way to see what happens is to modify our code and
rerun our app. Let's throttle the faster AsyncStream. filled.entries

sends a new Entry every 1.5 seconds. Let's set a throttle to 2

seconds like this.

SmoreNmore/Controllers/EntryController.swift

extension EntryController {
 private func listenForEntries() async {
 for await entry in merge(plain.entries,
 filled.entries
 .throttle(for: .seconds(2.0))) {
 entries.append(entry)
 }
 }
}

Did you get the results you expected?

The filled.entries serves up a new Entry every 1.5 seconds but we

used throttle() to say, "I need two seconds to recover from the

previous one."

So after filled 1 we need a break of two seconds. Meanwhile, filled 2
is emitted 1.5 seconds after filled 1.

There's no buffering so we don't get told about filled 2. We miss out
on it completely. A half second after filled 2 is created we're ready
for another one so in another second we get filled 3.

We'll look at a couple more AsyncAlgorithms and consider some

preconceptions we have.

Zip

Like many of the AsyncAlgorithms, zip() takes its inspiration from

ordinary Sequences. If we zip the two arrays [a,b,c] and [1, 2]

together we get a Sequence that is something like this array of pairs

[(a, 1), (b, 2)]. We pair up the elements into a new Sequence until

we exhaust either sequence.

So, how should that work with AsyncSequences? It's the same but we

may have to wait for the corresponding entry from the other
AsyncSequence.

We've got some setup work to do.

Uncomment the EntryPairGrid in MainView.

SmoreNmore/Views/MainView.swift

extension MainView: View {
 var body: some View {
 NavigationStack {
 VStack {
 EntryGrid(entries: controller.entries)
 EntryPairGrid(entryPairs: controller.entryPairs)
 }
 .padding()
 .navigationTitle("Entries")
 .navigationBarTitleDisplayMode(.inline)
 }
 }
}

Add listenForEntryPairs() to EntryController. It will iterate over the

zip() of plain.entries and filled.entries and modify entryPairs.

We'll also simplify listenForEntries() to just use plain.entries again.

SmoreNmore/Controllers/EntryController.swift

extension EntryController {
 private func listenForEntries() async {
 for await entry in plain.entries {
 entries.append(entry)
 }
 }
 private func listenForEntryPairs() async {
 for await pair in zip(plain.entries,
 filled.entries) {
 entryPairs.append(EntryPair(pair))
 }
 }
}

As a sanity check, run the app. The plain entries should appear on
the screen as before.

To check out the zip() change the init() to call

listenForEntryPairs().

SmoreNmore/Controllers/EntryController.swift

init() {
 Task {
 await listenForEntryPairs()
 }
}

The zip() runs as we expect. We see each plain entry paired with

the corresponding filled entry even though the filled ones come out
more quickly.

Before moving on, I want to show you what might be unexpected
behavior - particularly if you're used to working with Combine
publishers.

One and only one

With Combine we can arrange that more than one subscriber is
connected to the same publisher. Every time the publisher publishes
a new value, each subscriber will get it.

That's not the case with AsyncSequences. At least for now, if two for

await in loops are listening to the same AsyncSequence, elements

from the sequence will go to one or the other but not both.

Here's a quick demonstration of that.

Add a Task with the work listenForEntries() to init().

SmoreNmore/Controllers/EntryController.swift

init() {
 Task {
 await listenForEntries()
 }
 Task {
 await listenForEntryPairs()
 }
}

Run the app. The plain entries are split between the top grid and
the bottom pairs grid. This also means that when we run out of plain
entries, the pairs finish.

We can see the plain and pairs finishing by adding this onTermination

to entries.

SmoreNmore/Controllers/AutoEntryVendor.swift

lazy private(set) var entries
= AsyncStream(Entry.self) { continuation in
 let timer
 = AsyncTimerSequence.repeating(every: .seconds(delay))
 continuation.onTermination = { termination in
 print("Stopped (is filled =", self.isFilled, ")"
 , termination)
 }
 Task {
 for await _ in timer {
 if count < 20 {
 count += 1
 continuation.yield(Entry(number: count,
 isFilled: isFilled))
 } else {
 continuation.finish()
 }
 }
 }
}

Run the app and we see this in the Console.

Stopped (is filled = false) finished

Stopped (is filled = false) finished

Stopped (is filled = true) cancelled

The first two come from the plain one finishing. One report comes
from the listenForEntries() method and the other comes from the

listenForEntryPairs() method. Finally, when the plain entries are

finished, zip() knows it's complete and cancels listening for the

filled entries even though we've only used ten of them.

CombineLatest

Let's look at one more example as sometimes we want to reevaluate
a pair of entries when either AsyncSequence updates.

For example, an AsyncSequence is a great way to listen for changes to

a subscription or other authorization and we may want to take some
action only when two different authorizations are valid.

In our simple example, delete the EntryGrid in MainView so that more

of the results appear on the screen.

SmoreNmore/Views/MainView.swift

extension MainView: View {
 var body: some View {
 NavigationStack {
 VStack {
 EntryGrid(entries: controller.entries)
 EntryPairGrid(entryPairs: controller.entryPairs)
 }
 .padding()
 .navigationTitle("Entries")
 .navigationBarTitleDisplayMode(.inline)
 }
 }
}

Remove listenForEntries() in EntryController and change zip() to

combineLatest().

SmoreNmore/Controllers/EntryController.swift

import Combine

@MainActor
class EntryController: ObservableObject {
 @Published private(set) var entries: [Entry] = []
 @Published private(set) var entryPairs: [EntryPair] = []

 private let plain = AutoEntryVendor(delay: 2.0)
 private let filled = AutoEntryVendor(delay: 1.5,
 isFilled: true)

 init() {
 Task {
 await listenForEntries()
 }
 Task {
 await listenForEntryPairs()
 }
 }
}

import AsyncAlgorithms

extension EntryController {
 private func listenForEntries() async {
 for await entry in plain.entries {
 entries.append(entry)
 }
 }
 private func listenForEntryPairs() async {
 for await pair in combineLatest(plain.entries,
 filled.entries) {
 entryPairs.append(EntryPair(pair))
 }
 }
}

Run the app. This time you can see a pair whenever either the plain
or the filled changes.

The final thing to warn you about AsyncAlgorithms is that the latest

releases are initially tied to the current Swift toolchain so it will be
harder to use this package if you aren't keeping your tools current.

That completes our look at AsyncSequences and AsyncStreams. In the

next chapter we explore structured concurrency.

	Chapter 3: AsyncSequences and AsyncStreams
	AsyncAlgorithms

