

The Curious Case Of The Async Cafe

An Introduction To

Modern Concurrency In Swift

by Daniel H Steinberg

Editors Cut

Copyright

"The Curious Case of the Async Cafe", by Daniel H Steinberg

Copyright © 2023 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-04-4

Book Version

This is version 0.5 for Swift 5.7, Xcode 14.2, macOS Ventura 13.0, and iOS 16.1 released

February 2023. All code has been tested on Apple Silicon.

Code Download

Visit https://github.com/editorscut/ec013Async for all of the code
for this book.

Run it in Xcode 14.2 or higher. All code is written in Swift.

To avoid long lines and code that wraps, I've split some lines in
code listings in ways that you might not in an IDE. Please feel free to
not break the lines where I have.

Recommended Settings

The ePub is best viewed in scrolling mode on an iPad. On smaller
devices I also choose landscape. For some reason that I don't
understand, scrolling mode is supported by Apple's Books app on

https://github.com/editorscut/ec013Async

the iPad but not on the Mac. If you view this book in Apple's Books
app, choose "Let lines break naturally" in Preferences > General.
Finally, I've gone to great pains to make this look good in light and
dark mode but Apple has foiled me yet again. I'm told that not all of
the syntax coloring works in dark mode.

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

https://github.com/editorscut/ec013Async/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

Table Of Contents

Table Of Contents
Chapter 4: Structured Concurrency

TaskGroups

CHAPTER 4

Structured Concurrency

Sections: Unstructured Async Calls
Async Let
Cancelling Tasks
Task Values
Unstructured App Store Search
TaskGroups
Sequences of TaskGroups
AsyncImage

So far we've started with various situations and introduce various
methods or types that are part of the async / await ecosystem to
make things better.

In this chapter we look at examples of when this isn't enough. We
want more control over Tasks and may want to coordinate them.

This is where structured concurrency comes in.

We'll build a simple example using what we've learned so far to
make asynchronous calls to create two Entrys and compare them.

We then use async let so that the random numbers for both Entrys

can be calculated at the same time. Part of this example will allow us
to dig in a bit deeper into Task creation and cancellation.

That's great for two values, but what if we have a whole bunch of
values?

We use TaskGroups to work with many asynchronous calls and handle

each as it is completed.

This is one of those chapters where you're going to keep saying,
"that's just what I was looking for."

CHAPTER 4 : SECTION 6

TaskGroups

Edges was already seated at an outside table at the Async Cafe
when I arrived.

"I would suggest pastry again today," I said, "but poor Wiggins looked
exhausted by the end yesterday."

Edges nodded, "I noticed that too. But don't worry. Today Wiggins has
ensured that more of the Irregulars are available. Go ahead and
make your list."

I handed my list to Edges who glanced at it and gave a loud whistle.

For the next few minutes one young person after another arrived, was
given a pastry order, and then ran off to fulfill it.

Over the next twenty minutes of so, the youths returned. Some had
had to travel further to fetch their assigned pastry and some were just
faster than others.

As each returned, Edges thanked them, took the pastry, checked it off
of the list, divided it and placed half in front of each of us.

"This," said Edges, "was a task intended for a group. A group such as
the Baker's Treat Irregulars."

async let is a great device for executing a small number of

asynchronous tasks concurrently when the order in which they will
be used is known.

Sometimes, however, we have a large, dynamic, or unknown
number of asynchronous tasks we wish to process concurrently and
we're happy to use them in the order the tasks complete.

TaskGroups are the mechanism designed to help us with exactly this

situation. We'll start working with them in this section.

Continue with our current project or start with the project in
Chapter04/05/.

The "Before" picture

Before we refactor our app using structured concurrency, let's take a
snapshot by running the app using the Swift Concurrency
instrument.

I entered a search term and see this for alive and running tasks.

When I enter the search a Task is created. You can see this is the

only Task alive during the search. It runs as various URLSession

requests are made and received. When the last image is added to
images the Task completes.

Before we use TaskGroup which is the correct tool for our job, let's

look at what happens if we try to use async let.

Structured Concurrency with async let

Earlier in the chapter we used async let to create child Tasks.

Let's try this technique when we fetch the images.

AppIcons/Controllers/AppStore.swift

extension AppStore {
 private func retrieveImages() async throws {
 for app in apps {
 async let (imageData, _)
 = try await ephemeralURLSession
 .data(from: app.artworkURL)
 let image = UIImage(data: try await imageData)
 publish(image: image,
 forAppNamed: app.name)
 }
 }
}

Run the app and you'll see the icons appear in the same order filling
rows from top to bottom with each row being filled from left to
right.

The for loop takes each app in turn and creates a child Task. The

next Task isn't created until imageData returns and we publish() the

image.

Run the app using the Swift Concurrency instrument. You should see
something like this.

You can see a single Task when the initial request is made. After it

returns we start retrieving images using child Tasks. Notice that only

a single child Task is alive at any time. When the final image is

retrieved we drop from two Tasks to none.

You can also see in the Task Forest that there is only one child Task

at a time.

There is a tool that allows us to do more work at once and that is
the TaskGroup.

Introducing TaskGroup

We create a TaskGroup with a helper function in much the same way

that we created a CheckedContinuation. The trailing closure in

withTaskGroup() or withThrowingTaskGroup() provides the group that

we'll be using.

withThrowingTaskGroup() is async throws because the method waits for

all of the Tasks in the group to complete or for one to throw an error.

When we create a TaskGroup we have to specify what it's a TaskGroup

of.

Unlike AsyncStream, we aren't specifying what will be emitted by the

TaskGroup. A TaskGroup, as you may expect, contains Tasks.

But each child Task may return a value. We'll see how that works in

the next section. For now the Tasks don't return anything which is

why we've specified that we're creating throwing TaskGroups of

Void.self.

AppIcons/Controllers/AppStore.swift

extension AppStore {
 private func retrieveImages() async throws {
 try await withThrowingTaskGroup(of: Void.self) { group in
 for app in apps {
 async let (imageData, _)
 = try await ephemeralURLSession
 .data(from: app.artworkURL)
 let image = UIImage(data: try await imageData)
 publish(image: image,
 forAppNamed: app.name)
 }
 }
 }
}

We have a TaskGroup but it isn't yet doing anything. Run the app and

it runs as before.

Adding Tasks to a TaskGroup

Add child Tasks to our group with group.addTask().

The work that each Task will perform is specified in the trailing

closure. In our current case each iteration of the for loop is it's own

child Task.

The order in which Tasks in a group will be run is explicitly not

guaranteed.

There are two compiler errors with the following that we'll fix in a
minute.

AppIcons/Controllers/AppStore.swift

extension AppStore {
 private func retrieveImages() async throws {
 try await withThrowingTaskGroup(of: Void.self) { group in
 for app in apps {
 group.addTask {
 async let (imageData, _)
 = try await ephemeralURLSession
 .data(from: app.artworkURL)
 let image = UIImage(data: try await imageData)
 publish(image: image, // problem
 forAppNamed: app.name)
 }
 }
 }
 }
}

We're calling publish() from inside a child Task. It doesn't get the

context of self that the parent Task has so we have to use

self.publish().

In addition, publish() is on the main actor but the call to publish() is

not on the main actor so we have to use await with publish()

because the main actor might be busy doing something else.

We also have a warning that no calls to throwing functions occur
within the try so we can eliminate it.

AppIcons/Controllers/AppStore.swift

extension AppStore {
 private func retrieveImages() async throws {
 try await withThrowingTaskGroup(of: Void.self) { group in
 for app in apps {
 group.addTask {
 async let (imageData, _)
 = try await ephemeralURLSession
 .data(from: app.artworkURL)
 let image = UIImage(data: try await imageData)
 await self.publish(image: image,
 forAppNamed: app.name)
 }
 }
 }
 }
}

Run the app and enter a search term.

You should notice two things. First, the icons appear much more
quickly. Second, the icons no longer appear in an orderly fashion.

The "After" picture

Run the app in the Swift Concurrency instrument again and enter a
search term.

You can see empirically how much faster the images return.

Once again look at the alive and running Tasks and look at the Task

Forest.

The TaskForest shows that each of the Tasks added to the TaskGroup

is a child Task. We can also see that each of these has a further child

Task because we use async let. If you change this back to try await

instead of async let we'll only have one level of child Tasks.

Second, look at the graphs for running and alive Tasks. You can see

the initial Task created. Once the data() returns and we create group

Tasks for each image data request, the number of alive Tasks grows.

Then there's another pause while we wait for these to return.
Following the pause, the number of running Tasks spikes and the

number of alive Tasks starts to fall as they complete.

In the next section we take advantage of something very cool about
TaskGroups: they are AsyncSequences.

	Chapter 4: Structured Concurrency
	TaskGroups

