

The Case Of The Vanishing Bodies

An Introduction To

Swift Macros

by Daniel H Steinberg

Editors Cut

Copyright

"The Case of the Vanishing Bodies", by Daniel H Steinberg

Copyright © 2024 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-06-8

Book Version

This is the initial release of this book for Swift 5.10, Xcode 15.3, macOS Sonoma 14.4, and

iOS 17.4 released April 2024. All code has been tested on Apple Silicon.

Code Download

Visit https://github.com/editorscut/ec015swiftmacros for all of the
code for this book.

Run it in Xcode 15 or higher (15.3 if possible). All code is written in
Swift.

To avoid long lines and code that wraps, I've split some lines in
code listings in ways that you might not in an IDE. Please feel free to
not break the lines where I have.

Recommended Settings

The ePub is best viewed in scrolling mode on an iPad. On smaller
devices I also choose landscape. For some reason that I don't

https://github.com/editorscut/ec015swiftmacros

understand, scrolling mode is supported by Apple's Books app on
the iPad but not on the Mac. If you view this book in Apple's Books
app, choose "Let lines break naturally" in Preferences > General.
Finally, I've gone to great pains to make this look good in light and
dark mode but Apple has foiled me yet again. I'm told that not all of
the syntax coloring works in dark mode.

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

https://github.com/editorscut/ec015swiftmacros/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

Table Of Contents

Table Of Contents
Copyright and Legal

Copyright
Book Version
Code Download
Recommended Settings
Submit Errata
Official Links
Legal

Chapter 5: More Attached Macros

Extension Macros

CHAPTER 5

More Attached Macros

In the previous chapter you were introduced to attached macros
through an extended example of working with a member macro.
The member macro allowed us to add a new property or method to
a class, struct, enum, actor, or protocol.

In this chapter we meet many more attached macros. The extension
macro allows us to create an extension that conforms to a given
protocol. The accessor macro lets us add a get, set, willSet, or

didSet to a property. The peer macro can be attached to a property

to add a member at the same level and more. The memberAttribute
macro can add annotations to members such as @Published and

deprecation notices.

Another cool thing that we can do with attached macros that we
can't do with freestanding macros is combine them. We can, and
will, define a single macro that is both a peer macro and an accessor
macro.

But wait, there's more.

We can use the memberAttribute macro to annotate a member with
another attached macro.

I think you're going to enjoy this chapter. But first, let's revisit when
it is appropriate to create a macro.

CHAPTER 5 : SECTION 2

Extension Macros

"Swiftly," Edges said, "I think it is time we start billing our clients for
some of your work."

"Ok," I said, trying to contain my excitement.

"We won't charge for everything," Edges continued, "only when we feel
that your presence is contributing."

I nodded. "How," I asked, "will we remember what to bill for."

"We will make a notation like this," said Edges.

@Billable(client Name, rate: standard)
Research at Library(3 hours)

I added the @Billable to the top of the event in our calendar. Suddenly
the event transformed.

Research at Library(3 hours)

Research is Billable
 client Name
 standard rate

"That," continued Edges, "will make it clear which items are Billable and
which are not."

In this section we will create a macro that adds an extension that
conforms to a given protocol.

Sometimes this conformance is automatic and there's nothing more for
us to do than declare it. Other times we need to define a variable or
implement a method to conform to the given protocol. The extension
macro allows us to create either type.

We're going to add a Hashable and an Identifiable extension to an

enumeration. Let's motivate our macro with an example.

The goal

Suppose you have an enumeration.

enum Sample {
 case one
 case two
 case three
}

It is trivial to conform Sample to Identifiable. We can add this

extension.

enum Sample {
 case one
 case two
 case three
}

extension Sample: Identifiable {
 var id: Sample {
 self
 }
}

You could instead declare the type of id to be Self if you want. I'm

going to leave it the way it is.

If the cases in Sample have associated values then Sample must also be

Hashable.

enum Sample {
 case one(String)
 case two(Int)
 case three
}

extension Sample: Hashable {}

extension Sample: Identifiable {
 var id: Sample {
 self
 }
}

The two extensions are absolutely boiler plate. There is nothing
interesting or dynamic about them. We're going to create an attached
macro called an extension macro that adds these two extensions.

Defining our Macro

Create a new package with the Macro template named EnumId and

make the usual changes to get it to compile. The macro will start as
#EnumID. Alternately, start with the EnumID package in

Chapter05/EnumID by double-clicking Package.swift. (The code in
Chapter05/02/EnumID is the final code you'll have at the end of this
section.)

Let's begin by adding a comment to the top of EnumID before the

declaration.

EnumID/Sources/EnumID/EnumID.swift
/// A macro that adds an extension to make an enum identifiable
/// It requires (but doesn't check)
/// that any associated values are identifiable
///

Change the definition to an attached macro of type extension. Also the
declaration of the call can be simplified.

EnumID/Sources/EnumID/EnumID.swift
@attached(extension)
public macro EnumID()
= #externalMacro(module: "EnumIDMacros",
 type: "EnumIDMacro")

This is, of course, not sufficient. We have to add the names of the
protocols we're declaring conformance to. In addition, we are adding a
member named id which is also added to the definition.

EnumID/Sources/EnumID/EnumID.swift
@attached(extension, conformances: Identifiable, Hashable,
 names: named(id))
public macro EnumID()
= #externalMacro(module: "EnumIDMacros",
 type: "EnumIDMacro")

Next, let's implement the macro.

Implementing an Extension Macro

We've been through this next step before. Change EnumIDMacro to

conform to ExtensionMacro, delete expansion(), and use the FixIt to stub

out the appropriate version of expansion().

EnumID/Sources/EnumIDMacros/EnumIDMacro.swift
public struct EnumIDMacro: ExtensionMacro {
 public static func expansion(
 of node: AttributeSyntax,
 attachedTo declaration: some DeclGroupSyntax,
 providingExtensionsOf type: some TypeSyntaxProtocol,
 conformingTo protocols: [TypeSyntax],
 in context: some MacroExpansionContext
) throws -> [ExtensionDeclSyntax] {
 // ...
 }
}

The only thing we need to check for is that we are applying this macro
to an enumeration. For simplicity, I've used a fatalError(). You may

choose to use an Error or a Diagnostic.

EnumID/Sources/EnumIDMacros/EnumIDMacro.swift
public struct EnumIDMacro: ExtensionMacro {
 public static func expansion(
 of node: AttributeSyntax,
 attachedTo declaration: some DeclGroupSyntax,
 providingExtensionsOf type: some TypeSyntaxProtocol,
 conformingTo protocols: [TypeSyntax],
 in context: some MacroExpansionContext
) throws -> [ExtensionDeclSyntax] {
 guard declaration.is(EnumDeclSyntax.self) else {
 fatalError("IdentifiableEnum can only be applied to an enum")
 }
 // ...
 }
}

If the type that @EnumID is annotating is an enum, we want to add two

extensions. One conforms to Hashable and the other conforms to

Identifiable and provides a computed property for id.

The init we're using for ExtensionDeclSyntax() can throw so we call each

with a try. The expansion() method is declared with throws so there's

nothing else we need do.

You'll also see that I use type.trimmed. This eliminates what SwiftSyntax

refers to as trivia surrounding the type. This is the stuff that doesn't

matter for our goals but would make it harder to write unit tests that
are sensitive, for example, to extra spaces.

EnumID/Sources/EnumIDMacros/EnumIDMacro.swift
public struct EnumIDMacro: ExtensionMacro {
 public static func expansion(
 of node: AttributeSyntax,
 attachedTo declaration: some DeclGroupSyntax,
 providingExtensionsOf type: some TypeSyntaxProtocol,
 conformingTo protocols: [TypeSyntax],
 in context: some MacroExpansionContext
) throws -> [ExtensionDeclSyntax] {
 guard declaration.is(EnumDeclSyntax.self) else {
 fatalError("IdentifiableEnum can only be applied to an enum")
 }
 return
 [
 try ExtensionDeclSyntax(
 """
 extension \(type.trimmed): Hashable {}
 """
),
 try ExtensionDeclSyntax(
 """
 extension \(type.trimmed): Identifiable {
 var id: \(type.trimmed) {
 return self
 }
 }
 """
)
]
 }
}

Let's update main.swift and use the macro.

Using our macro

Enter our motivating example into main.

EnumID/Sources/EnumIDClient/main.swift
import EnumID
import Foundation

enum Sample {
 case one(String)
 case two(Int)
 case three
}

Annotate Sample with our extension macro EnumID.

EnumID/Sources/EnumIDClient/main.swift
import EnumID
import Foundation

@EnumID
enum Sample {
 case one(String)
 case two(Int)
 case three
}

Expand the macro and you'll see the two added extensions.

Of course, we wouldn't apply this macro if Sample already conformed to

Identifiable but we might if Sample conformed to Hashable.

Although I won't work this example myself, you may want to consider
how you might implement @EnumID so that it doesn't produce the

extension with Hashable conformance if Sample already conforms to it.

For completion, here's a quick unit test that we can run.

EnumID/Tests/EnumIDTests/EnumIDTests.swift
final class EnumIDTests: XCTestCase {
 func testMacro() throws {
 #if canImport(EnumIDMacros)
 assertMacroExpansion(
 """
 @EnumID
 enum Sample {
 case one(String)
 case two(Int)
 case three
 }
 """,
 expandedSource: """
 enum Sample {
 case one(String)
 case two(Int)
 case three
 }

 extension Sample: Hashable {
 }

 extension Sample: Identifiable {
 var id: Sample {
 return self
 }
 }
 """,
 macros: testMacros
)
 #else
 throw XCTSkip("macros are only supported on the host platform")
 #endif
 }
}

This test should pass.

	Copyright and Legal
	Copyright
	Book Version
	Code Download
	Recommended Settings
	Submit Errata
	Official Links
	Legal

	Chapter 5: More Attached Macros
	Extension Macros

