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CHAPTER 5

More Attached Macros

In the previous chapter you were introduced to attached macros
through an extended example of working with a member macro.
The member macro allowed us to add a new property or method to
a class, struct, enum, actor, or protocol.

In this chapter we meet many more attached macros. The extension
macro allows us to create an extension that conforms to a given
protocol. The accessor macro lets us add a get, set, willSet, or

didSet to a property. The peer macro can be attached to a property

to add a member at the same level and more. The memberAttribute
macro can add annotations to members such as @Published and

deprecation notices.

Another cool thing that we can do with attached macros that we
can't do with freestanding macros is combine them. We can, and
will, define a single macro that is both a peer macro and an accessor
macro.

But wait, there's more.

We can use the memberAttribute macro to annotate a member with
another attached macro.



I think you're going to enjoy this chapter. But first, let's revisit when
it is appropriate to create a macro.



CHAPTER 5 : SECTION 2

Extension Macros

"Swiftly," Edges said, "I think it is time we start billing our clients for
some of your work."

"Ok," I said, trying to contain my excitement.

"We won't charge for everything," Edges continued, "only when we feel
that your presence is contributing."

I nodded. "How," I asked, "will we remember what to bill for."

"We will make a notation like this," said Edges.

@Billable(client Name, rate: standard)
Research at Library(3 hours)

I added the @Billable to the top of the event in our calendar. Suddenly
the event transformed.

Research at Library(3 hours)

Research is Billable
  client Name
  standard rate

"That," continued Edges, "will make it clear which items are Billable and
which are not."



In this section we will create a macro that adds an extension that
conforms to a given protocol.

Sometimes this conformance is automatic and there's nothing more for
us to do than declare it. Other times we need to define a variable or
implement a method to conform to the given protocol. The extension
macro allows us to create either type.

We're going to add a Hashable and an Identifiable extension to an

enumeration. Let's motivate our macro with an example.

The goal

Suppose you have an enumeration.

enum Sample {
  case one
  case two
  case three
}

It is trivial to conform Sample to Identifiable. We can add this

extension.

enum Sample {
  case one
  case two
  case three
}

extension Sample: Identifiable {
  var id: Sample {
    self
  }
}



You could instead declare the type of id to be Self if you want. I'm

going to leave it the way it is.

If the cases in Sample have associated values then Sample must also be

Hashable.

enum Sample {
  case one(String)
  case two(Int)
  case three
}

extension Sample: Hashable {}

extension Sample: Identifiable {
  var id: Sample {
    self
  }
}

The two extensions are absolutely boiler plate. There is nothing
interesting or dynamic about them. We're going to create an attached
macro called an extension macro that adds these two extensions.

Defining our Macro

Create a new package with the Macro template named EnumId and

make the usual changes to get it to compile. The macro will start as
#EnumID. Alternately, start with the EnumID package in

Chapter05/EnumID by double-clicking Package.swift. (The code in
Chapter05/02/EnumID is the final code you'll have at the end of this
section.)



Let's begin by adding a comment to the top of EnumID before the

declaration.

EnumID/Sources/EnumID/EnumID.swift 
/// A macro that adds an extension to make an enum identifiable
/// It requires (but doesn't check) 
/// that any associated values are identifiable
///

Change the definition to an attached macro of type extension. Also the
declaration of the call can be simplified.

EnumID/Sources/EnumID/EnumID.swift 
@attached(extension)
public macro EnumID()
= #externalMacro(module: "EnumIDMacros",
                 type: "EnumIDMacro")

This is, of course, not sufficient. We have to add the names of the
protocols we're declaring conformance to. In addition, we are adding a
member named id which is also added to the definition.

EnumID/Sources/EnumID/EnumID.swift 
@attached(extension, conformances: Identifiable, Hashable,
          names: named(id))
public macro EnumID()
= #externalMacro(module: "EnumIDMacros",
                 type: "EnumIDMacro")

Next, let's implement the macro.

Implementing an Extension Macro

We've been through this next step before. Change EnumIDMacro to

conform to ExtensionMacro, delete expansion(), and use the FixIt to stub

out the appropriate version of expansion().



EnumID/Sources/EnumIDMacros/EnumIDMacro.swift
public struct EnumIDMacro: ExtensionMacro {
  public static func expansion(
    of node: AttributeSyntax,
    attachedTo declaration: some DeclGroupSyntax,
    providingExtensionsOf type: some TypeSyntaxProtocol,
    conformingTo protocols: [TypeSyntax],
    in context: some MacroExpansionContext
    ) throws -> [ExtensionDeclSyntax] {
    // ...
  }
}

The only thing we need to check for is that we are applying this macro
to an enumeration. For simplicity, I've used a fatalError(). You may

choose to use an Error or a Diagnostic.

EnumID/Sources/EnumIDMacros/EnumIDMacro.swift
public struct EnumIDMacro: ExtensionMacro {
  public static func expansion(
    of node: AttributeSyntax,
    attachedTo declaration: some DeclGroupSyntax,
    providingExtensionsOf type: some TypeSyntaxProtocol,
    conformingTo protocols: [TypeSyntax],
    in context: some MacroExpansionContext
    ) throws -> [ExtensionDeclSyntax] {
    guard declaration.is(EnumDeclSyntax.self) else {
      fatalError("IdentifiableEnum can only be applied to an enum")
    }
    // ...
  }
}

If the type that @EnumID is annotating is an enum, we want to add two

extensions. One conforms to Hashable and the other conforms to

Identifiable and provides a computed property for id.



The init we're using for ExtensionDeclSyntax() can throw so we call each

with a try. The expansion() method is declared with throws so there's

nothing else we need do.

You'll also see that I use type.trimmed. This eliminates what SwiftSyntax

refers to as trivia surrounding the type. This is the stuff that doesn't

matter for our goals but would make it harder to write unit tests that
are sensitive, for example, to extra spaces.



EnumID/Sources/EnumIDMacros/EnumIDMacro.swift
public struct EnumIDMacro: ExtensionMacro {
  public static func expansion(
    of node: AttributeSyntax,
    attachedTo declaration: some DeclGroupSyntax,
    providingExtensionsOf type: some TypeSyntaxProtocol,
    conformingTo protocols: [TypeSyntax],
    in context: some MacroExpansionContext
    ) throws -> [ExtensionDeclSyntax] {
    guard declaration.is(EnumDeclSyntax.self) else {
      fatalError("IdentifiableEnum can only be applied to an enum")
    }
    return
     [
      try ExtensionDeclSyntax(
     """
     extension \(type.trimmed): Hashable {}
     """
     ),
      try ExtensionDeclSyntax(
     """
     extension \(type.trimmed): Identifiable {
       var id: \(type.trimmed) {
         return self
       }
     }
     """
     )
     ]
  }
}

Let's update main.swift and use the macro.

Using our macro

Enter our motivating example into main.



EnumID/Sources/EnumIDClient/main.swift
import EnumID
import Foundation

enum Sample {
  case one(String)
  case two(Int)
  case three
}

Annotate Sample with our extension macro EnumID.

EnumID/Sources/EnumIDClient/main.swift
import EnumID
import Foundation

@EnumID
enum Sample {
  case one(String)
  case two(Int)
  case three
}

Expand the macro and you'll see the two added extensions.

Of course, we wouldn't apply this macro if Sample already conformed to

Identifiable but we might if Sample conformed to Hashable.

Although I won't work this example myself, you may want to consider
how you might implement @EnumID so that it doesn't produce the

extension with Hashable conformance if Sample already conforms to it.

For completion, here's a quick unit test that we can run.



EnumID/Tests/EnumIDTests/EnumIDTests.swift
final class EnumIDTests: XCTestCase {
    func testMacro() throws {
        #if canImport(EnumIDMacros)
        assertMacroExpansion(
            """
            @EnumID
            enum Sample {
              case one(String)
              case two(Int)
              case three
            }
            """,
            expandedSource: """
            enum Sample {
              case one(String)
              case two(Int)
              case three
            }

            extension Sample: Hashable {
            }

            extension Sample: Identifiable {
              var id: Sample {
                return self
              }
            }
            """,
            macros: testMacros
        )
        #else
        throw XCTSkip("macros are only supported on the host platform")
        #endif
    }
}

This test should pass.
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