

A Combine Kickstart

Introducing The Declarative Framework

For Processing Values Over Time

by Daniel H Steinberg

Editors Cut

Copyright

"A Combine Kickstart", by Daniel H Steinberg

Copyright © 2021 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-02-0

Book Version

This is version 0.4 for Swift 5.3 (tested and verified on Swift 5.5), Xcode 12.4 (tested and

verified in Xcode 13), macOS Big Sur and Monterey, and iOS 14 and iOS 15 released

August 2021. All code has been tested on Apple Silicon.

Code Download

Visit https://github.com/editorscut/ec011CombineKickstart for all of
the code for this book.

Run it in Xcode 12 or higher. All code is written in Swift.

Recommended Settings

The ePub is best viewed in scrolling mode on an iPad. On smaller
devices I also choose landscape. For some reason that I don't
understand, scrolling mode is supported by Apple's Books app on
the iPad but not on the Mac. If you view this book in Apple's Books
app, choose "Let lines break naturally" in Preferences > General.

https://github.com/editorscut/ec011CombineKickstart

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

https://github.com/editorscut/ec011CombineKickstart/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

Table Of Contents

Table Of Contents
Chapter 1: The Forest

Without Combine

CHAPTER 1

The Forest

Sections: Without Combine
SwiftUI
Did Set
Publishers
Subscribers
Subscriptions
Operators
Road Map
Credits, Bio, and Version History

My goal in this short book it to give you a feel for what problems
the Combine framework helps you solve and best practices in using
it.

I assume that you are an experienced developer who is familiar with
how components communicate in iOS and macOS apps. You've
worked with target-action, delegates, closures, and perhaps
notifications, URLSessions, and other familiar mechanisms for
asynchronous communication.

Combine unifies and, in my opinion, simplifies this family into a
single API.

Apple introduced Combine at WWDC 2019 and included it in
Xcode 11, iOS 13, and macOS 10.15 Catalina.

They added a single method to Combine a year later and so if you
have to support back to these platforms you can not use the
assign(to: &) method.

Nothing was added to Combine at WWDC 2021, but Apple's new
async/await syntax was introduced and is not backwards
compatible.

Async/await addresses many of the asynchronous uses of Combine
in a language level feature rather than an additional proprietary API.
So which should you use?

If you must support OS releases prior to iOS 15 and macOS 12
Monterey, then you cannot use async/await.

If you are interested in more of the react style of architecture you
will probably reach for Combine instead of async/await.

You may come to like the style of programming with Combine.

I will not be covering async/await in this book - that will be the topic
of another book.

This book is all about Combine.

There's a ton to learn and it's easy to get lost in all of the details of
the Combine Framework.

In this chapter we begin with an example that demonstrates how
the various pieces of Combine work together. I just want to give you
an overview to help you build a mental model. We're not going to
begin with definitions and theory.

We'll cover definitions and theory later after you've had a chance to
play with Combine a bit. Over time you'll become more and more
powerful.

There are an initially overwhelming number of different methods,
classes, and structs that are part of the Combine framework. We are
not going exhaustively cover them all.

On the other hand, we do cover a surprising number of them.

My goal is that when we're done, you'll be able to scan through the
docs and find the piece that does what you need or, if it doesn't
exist, build it yourself.

We're going to work some examples and you'll get an idea of what
Combine is and how to use it to great advantage.

When we get to the end you'll understand important details of the
individual parts but more importantly, you'll have the big picture of
how they fit together.

"But Daniel," you complain, "that doesn't say anything about what
Combine is or does."

It's better if I show you. By the end of this chapter you'll have the
beginnings of an idea of what Combine is and how it works.

This is a journey that will change the way you write code.

I'm really loving working with Combine. As I wrote this book and
began each chapter I thought, "I really love the ideas I'm going to
cover in this chapter."

When you begin with Combine, you scratch your head and think, "I
don't really see the point of this. It doesn't seem necessary. I already
know ways to do all of this."

And that's true.

But once you use Combine you see so many places in your code
that can be clarified by adopting it.

Enough preamble, let's begin.

In this chapter we begin with an example that is so tiny that you'll
think, "this is stupid."

We'll build a simple app that displays a random number between 1
and 100 every time you tap a button.

A hero's journey needs to begin where the hero (that's you) is.

As I said, I assume you are a developer who is comfortable writing in
Swift for one of Apple's platforms but I don't know whether you are
using UIKit/Cocoa or SwiftUI.

I'll begin with UIKit because I want to stress that although Combine
and SwiftUI work beautifully together, you can get started with
Combine even if you're not using SwiftUI yet. If you don't use UIKit,
don't worry, I'll explain just enough to get us started.

Anyway, back to our example.

Having a button that displays a random number is not the point of
the example.

The point is to use that simple app to explain the four pillars of
Combine: Publishers, Subscribers, Subscriptions, and Operators.

The first seven sections of this chapter will give you a gentle
introduction to the fundamentals of Combine.

The final two sections are where I tuck the front-matter. That's where
you'll find the road map to what's covered in this book, various links
and credits, and version information. It's a personal quirk that I don't
place those in the front of the book because I want us to get started
right away with our adventure.

Later chapters will include theory and definitions and a ton of
examples.

We'll have plenty of time in the rest of the book to look at individual
trees. In this chapter, we begin our journey with a look at the forest.

CHAPTER 1 : SECTION 1

Without Combine

In this section we look at a simple example that doesn't use
Combine at all.

Sample Code

Head to https://github.com/editorscut/ec011CombineKickstart for
the code that accompanies this book.

The code download has one folder for each chapter. This chapter's
folder is 01.

Inside 01 you'll find a folder for each section. In this chapter you'll
also see a folder labeled _StartHere. Each of the other sections
contains the finished code described in the corresponding section
of the book.

_StartHere contains two projects. Open the one in the Forest folder.
We'll look at EnchantedForest in the next section.

Before running the app, check that you've chosen an iOS simulator
as it will default to your Mac or a device if it is attached to your Mac.

To run enter Command-R, select the menu item Product > Run, or
tap the right triangle in the top left of Xcode as shown below.

https://github.com/editorscut/ec011CombineKickstart

In the figure above you can see that I've chosen the iPhone 12 mini
simulator. Also, the deployment target for the code download is iOS
14.3. The code should run on earlier dot releases of iOS, but it has
been tested on this release.

You should see a label on the simulator screen containing three dots
and below it a button with the title "Next".

You can tap the button but it doesn't do anything yet.

Now that our project is running on the simulator let's look at the
relevant code.

The ViewController

I've implemented the UI using a storyboard that you can find inside
of the Support group if you want to see it. There's nothing
particularly interesting about it, but if you've never seen
storyboards, this one contains a UILabel and a UIButton inside of a

UIStackView that is used to position them.

The important thing is that storyboards include a mechanism that
allows us to connect the button and label to our code so we can
respond to button taps and send the label messages to update
what it is displaying.

When the user taps the button we need to perform an action. We
do this by connecting the button to a method that is designated an
IBAction. When the button is tapped, this method is called.

Similarly, if we want to change the label's text, we connect the label
to a property that is designated an IBOutlet. This property is our

local handle to the actual label.

I've made the appropriate connections to the code that you'll find in
the ViewController.swift file.

I've named the action next() and the outlet label.

01/01/Forest/Forest/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var label: UILabel!

 @IBAction private func next(_ sender: UIButton) {
 }
}

Don't worry if both of the circles to the left of label and next() aren't

filled in. If you open the storyboard and come back to
ViewController they should appear filled in. The connections live in

the storyboard.

Before we implement the action, note that I've listed the path as
01/01/Forest/... as a caption above the code. That's because the
completed version of the code we're building in this section will be
found in the code for chapter 1, section 1: 01/01. All code listings
for code we will view or add to will be captioned to make it easier
for you to locate the appropriate file.

The Action

Here's what we're going to do when the button is tapped:

Choose a random Int between 1 and 100.

Use description to get the String corresponding to that Int.

Set label's text property to equal this String.

We'll accomplish all of that in a single line. Add the highlighted
code below to the body of next().

01/01/Forest/Forest/ViewController.swift

class ViewController: UIViewController {
 @IBOutlet private weak var label: UILabel!

 @IBAction private func next(_ sender: UIButton) {
 label.text = Int.random(in: 1...100).description
 }
}

Run the app again. Tap the button a few times.

Every time you tap the button a random number will be displayed
by the label.

So...

Between now and the end of the chapter we're going to add more
than a dozen lines of code to this example and several layers of
indirection and it will never do more than it does right now with this
single line of code.

Combine doesn't shine in this simple example.

You see the power of Combine in a real app where you are making
network calls and communicating with a model of some sort and
kicking off one or more actions from a change in state.

We'll get to all that in time.

For now, we're using this simple example to explore the
fundamentals of Combine.

We'll come back to this example after we take a quick moment to
implement this same app in SwiftUI. Again, if you haven't done
SwiftUI yet, don't worry. We'll only look at enough SwiftUI to
understand the example.

	Chapter 1: The Forest
	Without Combine

