

A Combine Kickstart Excerpt

Introducing The Declarative Framework

For Processing Values Over Time

by Daniel H Steinberg

Editors Cut

Copyright

"A Combine Kickstart", by Daniel H Steinberg

Copyright © 2021 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-02-0

Book Version

This is version 0.4 for Swift 5.3 (tested and verified on Swift 5.5), Xcode 12.4 (tested and

verified in Xcode 13), macOS Big Sur and Monterey, and iOS 14 and iOS 15 released

August 2021. All code has been tested on Apple Silicon.

Code Download

Visit https://github.com/editorscut/ec011CombineKickstart for all of
the code for this book.

Run it in Xcode 12 or higher. All code is written in Swift.

Recommended Settings

The ePub is best viewed in scrolling mode on an iPad. On smaller
devices I also choose landscape. For some reason that I don't
understand, scrolling mode is supported by Apple's Books app on
the iPad but not on the Mac. If you view this book in Apple's Books
app, choose "Let lines break naturally" in Preferences > General.

https://github.com/editorscut/ec011CombineKickstart

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

https://github.com/editorscut/ec011CombineKickstart/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

Table Of Contents

Table Of Contents
Chapter 3 - Section 7: Custom Publisher Properties

CHAPTER 3 : SECTION 7

Custom Publisher Properties

In this section we create a custom publisher from an existing private
publisher and store the publisher in a public property.

This may be one of my favorite techniques.

We will keep our private @Published model in State and use it as part

of a public publisher of Ints that we'll add to State.

It's important that you keep these two ideas separate in your head:

the publisher or pipeline for values, and

the values that are published and flow through the pipes.

Cleaning up

Once again, we begin by cleaning up. Remove the contents of
contentsSubscription() in Link.

03/07/Forest/Forest/Link.swift

extension Link {
 func contentsSubscription() {
 }
}

Remove ObservableObject and value from State.

03/07/Forest/FarFarAway/State.swift

import Combine

public class State: ObservableObject {
 @Published private var model = Model()

 public init() {}
}

extension State {
 public var value: Int {
 model.value
 }

 public func next() {
 model = model.next
 }
}

We're going to create a public property named valuePublisher that

is a publisher of Ints that never fails.

Value Publisher

Create a new property named valuePublisher in State.

03/07/Forest/FarFarAway/State.swift

public class State {
 @Published private var model = Model()

 public let valuePublisher =
 // more to come

 public init() {}
}

valuePublisher will start with the $model publisher.

Experienced Swift developers know that if one property depends on
another the dependent property must be declared to be lazy. All

lazy properties must be vars. I'm cautious enough that if I have a

public var I mark it as private(set) so others can read it but not alter

it.

03/07/Forest/FarFarAway/State.swift

public class State {
 @Published private var model = Model()

 lazy public private(set) var valuePublisher
 = $model
 // still working on it
 public init() {}
}

This may not yet build as Model is internal.

Option-Click valuePublisher and you'll see the type is

Published<Model>.Publisher

This is the same as the type of the publisher $model.

Customizing the Output

We'd like valuePublisher to publish Int's representing model.value

and we don't want to send the initial value 0.

You've performed both tasks before. Give it a try here.

Here's what I've done:

03/07/Forest/FarFarAway/State.swift

public class State {
 @Published private var model = Model()

 lazy public private(set) var valuePublisher
 = $model
 .dropFirst()
 .map(\.value)

 public init() {}
}

Our valuePublisher does everything we want it to do but Option-

Click it to see that it has this unfortunate type:

Publishers.MapKeyPath<Publishers.Drop<Published<Model>.Publisher>,
 Int>

The type let's us know that it begins with a publisher of Models,

drops one or more of them, then maps Model to Int.

This type does not make it easy for potential subscribers know that
in the end it is getting a publisher of Ints that never fails. It also is

exposing Model which is an internal detail as is the fact that we used

Drop, Map, and Published publishers.

We should clean up our public facing interface.

Erase to any Publisher

Our goal is to expose valuePublisher to Link and others outside of

the FarFarAway module.

They shouldn't care that we used dropFirst() and map(). All they

care is that they're getting a publisher of Ints that never fails.

We use type erasure to communicate that fact and to keep others
from depending on implementation details that we may later
change.

Declare valuePublisher to be AnyPublisher<Int, Never>.

03/07/Forest/FarFarAway/State.swift

public class State {
 @Published private var model = Model()

 lazy public private(set) var valuePublisher:
 AnyPublisher<Int, Never>
 = $model
 .dropFirst()
 .map(\.value) // we've introduced an error

 public init() {}
}

Build FarFarAway and you can see that we've introduced an error
that appears at map(\.value).

Our error is that there's a type mismatch. We're told that the return
type of valuePublisher is AnyPublisher<Int, Never> but we're

returning something of type
Publishers.MapKeyPath<Publishers.Drop<Published<Model>.Publisher>,

Int>.

We fix this with the method eraseToAnyPublisher which erases this

complex type and replaces it with AnyPublisher with the correct

Output and Failure types.

03/07/Forest/FarFarAway/State.swift

public class State {
 @Published private var model = Model()

 lazy public private(set) var valuePublisher:
 AnyPublisher<Int, Never>
 = $model
 .dropFirst()
 .map(\.value)
 .eraseToAnyPublisher()

 public init() {}
}

Now this is fit to be consumed.

Subscribing to Value Publisher

State has a public publisher of Ints that never fails so we can easily

connect to it in Link.

03/07/Forest/Forest/Link.swift

extension Link {
 func contentsSubscription() {
 state.valuePublisher // Pub<Int, Never>
 .assignDescription(asOptionalTo: &$contents)
 }
}

We've dramatically simplified contentsSubscription().

So...

I think we've created an incredibly clear and clean publisher chain in
three pieces.

The first piece in State takes $model and publishes an Int

representing any new values. It also is where the decision to drop

the first element is made. This publisher doesn't care about initial
values, it is only publishing changes.

The second piece in Link prepares each Int it receives in

valuePublisher for display by placing it in a String? that is

republished.

The third piece in ViewController takes each prepared String? it

receives from $contents and displays it in label's text.

In the next section we replace our UIKit code with SwiftUI.

Before we do, I want to point out that we have made all of our
changes in Link and State. We haven't touched the model or the UI.

We end this section with a visual summary of what we've done.

	Chapter 3 - Section 7: Custom Publisher Properties

