

Copyright

"The Case of the Crimson Test Suite", by Daniel H Steinberg

Copyright © 2024 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-07-5

Book Version

This is version 1.0 for Swift 6, Xcode 16 beta 6 or later, macOS Sonoma/Sequoia, and iOS

18 released August 2024.

Code Download

Visit https://github.com/editorscut/ec016swifttesting for all of the
code for this book.

Run it in Xcode 16 or higher. All code is written in Swift.

Recommended Settings

The ePub is best viewed in scrolling mode using the original fonts.
On smaller devices I also choose landscape. For some reason that I
don't understand, scrolling mode is supported by Apple's Books
app on the iPad but not on the Mac. If you view this book in Apple's
Books app, choose "Let lines break naturally".

https://github.com/editorscut/ec016swifttesting

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

https://github.com/editorscut/ec016swifttesting/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

CHAPTER 4

The Finer Points Of Swift Testing

In this final chapter we continue to work with our RPN Calculator
project.

One of the many nice things about Swift Testing is that, by default,
the tests are run in parallel and in random order.

This means that we won't make errors because we've missed hidden
dependencies that might arise if our tests always run in the same
order

There are, however, rare times when we want some subset of our
tests to run in a specific order.

Rare. Almost never.

In those cases we will explicitly mark a suite so that it runs the tests
sequentially from first to last. We'll begin this chapter with an
extended example of serialized tests and call out some of the issues
that can arise if we're not careful.

We then take a look at testing async methods. It's true that our

calculator doesn't have a need for async methods so I build a side-

example that let's us test async methods and explore some of the

issues we might have with them. Fortunately, Swift Testing is a

modern framework that is built to work with Swift 6 and embrace
Swift Concurrency.

We finish implementing our calculator's buttons for unary and binary
operations which brings up some of the finer points of any sort of
testing (though we are interested in particular in how they manifest
in Swift Testing).

We've used a lot of techniques to streamline our tests and test
output throughout this book. In the final sections we use
parameterized tests to eliminate repeated tests that differ only in
their input and testDescription to customize the way in which we

present results in the Tests Navigator and elsewhere.

CHAPTER 4 : SECTION 4

Testing Asynchronous Code

Edges looked up, surprised to see me, and said, "Swiftly, mon ami, I thought
you were working."

"I am working," I said. I turned to the waiter and asked for a cappuccino.

"Forgive me," said Edges, "it appears as if you aren't doing anything right
now."

"I'm waiting," I said. "I have a few phone calls to make. I made them all
and I'm waiting for them to call me back."

"And you're going to wait all day?" asked Edges.

"No," I said, "the Agile Detective told me that if they haven't called back by
the end of the day I should mark that task as failed and we'll move on to
something else tomorrow."

My phone buzzed. I glanced at the screen to see which call was being
returned, excused myself from the table, and said, "Hello?".

In this section we write tests for async methods.

The calculator will not require any asynchronous code, but I've
created some just so we can see how to test it.

Fortunately, Swift Testing works well with the familiar async
mechanisms you know from Swift.

Continue with our current project or use the project in
Chapter04/03.

Awaiting an async method

We aren't going to bother with creating a tag for async code but we
will create a new file and suite.

Create an empty file in RPNCalculatorTests named AsyncTests.swift.

RPNCalculatorTests/AsyncTests.swift
import Testing
@testable import RPNCalculator

@Suite("Async tests")
struct AsyncTests {

}

You'll find timesTwo(), the async function we're going to test, in

Model/Operators/AsyncOperator.swift.

RPNCalculator/Model/Operators/AsyncOperator.swift
func timesTwo(_ input: Double) async -> Double {
 try? await Task.sleep(for: .seconds(2))
 return input * 2
}

It sleeps for two seconds and then returns two times whatever
number is passed to it.

Next let's write a test that calls timesTwo().

Our call to this async method must be labeled await to mark a

possible suspension point.

RPNCalculatorTests/AsyncTests.swift
@Suite("Async tests for fake code")
struct AsyncTests {
 @Test
 func twoTimesANumber() {
 let result = await timesTwo(2.3) // error
 }
}

There is an error because we are making an async call outside of an
async context. We have two choices, we can either wrap our async
call in a Task or we can mark twoTimesANumber() as async.

The correct solution is to mark twoTimesANumber() as async, but I want

to show you what goes wrong if instead we use Task.

Wrongly using Task

To see what's wrong with Task let's create an expectation that

should fail.

RPNCalculatorTests/AsyncTests.swift
@Test
func twoTimesANumber() {
 Task {
 let result = await timesTwo(2.3)
 #expect(result == 17)
 }
}

Run the tests for the suite AsyncTests. The test reports that it passed.

That's not possible.

We get more of an idea of what's going on by checking out the
Console output.

Suite "Async tests" started.

Test twoTimesANumber() started.

Test twoTimesANumber() passed after 0.001 seconds.

Suite "Async tests" passed after 0.001 seconds.

Test run with 1 test passed after 0.001 seconds.

The test passes after 0.001 seconds but there's sleep for two
seconds in the middle of the call to timesTwo().

This is consistent with how Task works. We are giving work to be

performed asynchronously in a Task. This work will be initiated by an

executor outside the testing framework. Meanwhile, we immediately
resume execution after the close of the Task closure and exit the

test.

By the time timesTwo() completes and returns, you can see that the

test function twoTimesANumber has returned and our tests have

completed. So no errors are reported.

Task is the wrong tool for running asynchronous tests.

Test method should be async

If we want to run a test that includes calls to something that is async,

our test function or method should be async.

Remove Task and declare twoTimesANumber() to be async.

RPNCalculatorTests/AsyncTests.swift
@Test
func twoTimesANumber() async {
 Task {
 let result = await timesTwo(2.3)
 #expect(result == 17)
 }
}

Run AsyncTests and this time our test fails.

This is great.

Again, check the Console and the output matches our expectation
better. (I've removed the location information to shorten the
output.)

Suite "Async tests" started.

Test twoTimesANumber() started.

Test twoTimesANumber() recorded an issue:

Expectation failed: (result → 4.6) == (17 → 17.0)

Test twoTimesANumber() failed after 2.055 seconds with 1 issue.

Suite "Async tests" failed after 2.055 seconds with 1 issue.

Test run with 1 test failed after 2.055 seconds with 1 issue.

We see that twoTimesANumber() failed after a little more than two

seconds. The test is sticking around to get the result and then using
result in the expectation.

Known issues

We will fix our test in a minute. For now, suppose we couldn't. We
know there's a problem but we can't fix it yet.

We can wrap the problematic code in withKnownIssue like this.

RPNCalculatorTests/AsyncTests.swift
@Test
func twoTimesANumber() async {
 await withKnownIssue {
 let result = await timesTwo(2.3)
 #expect(result == 17)
 }
}

The test is still executed and the reason it isn't passing is displayed
in grey.

The issue is also reported in the Console.

Test twoTimesANumber() recorded a known issue

Expectation failed: (result → 4.6) == (17 → 17.0)

This allows us to keep track of an issue but not have a failing test.

I want to point out two important things about withKnownIssue.

First, even though I'm introducing it in the context of testing an
async method, we can use withKnownIssue in non-async settings as

well.

Even cooler, when the issue is resolved, the test will fail.

In other words, suppose we fix this test so that it would ordinarily
pass.

RPNCalculatorTests/AsyncTests.swift
@Test
func twoTimesANumber() async {
 await withKnownIssue {
 let result = await timesTwo(2.3)
 #expect(result == 4.6)
 }
}

This test now fails because there is no longer a known issue.

Known issue was not recorded

I love this. In a real example we would not be adjusting our test
we'd be working on the production code and our test would be
able to tell us that there's no longer a known issue and that we can
remove this guard rail.

Now that you've seen this, go ahead and remove withKnownIssue.

RPNCalculatorTests/AsyncTests.swift
@Test
func twoTimesANumber() async {
 await withKnownIssue {
 let result = await timesTwo(2.3)
 #expect(result == 4.6)
 }
}

This test now passes. Let's add another test.

A second async test

Instead of first calculating result and then using it in the

expectation, we can make an asynchronous call inside of the
expectation as long as it is made from the left side of the ==.

RPNCalculatorTests/AsyncTests.swift
@Suite("Async tests")
struct AsyncTests {
 @Test
 func twoTimesANumber() async {
 let result = await timesTwo(2.3)
 #expect(result == 4.6)
 }

 @Test
 func twoTimesAnotherNumber() async {
 #expect(await timesTwo(7.9) == 15.8)
 }
}

Run the tests in AsyncTests. I love what we see.

Suite "Async tests" started.

Test twoTimesAnotherNumber() started.

Test twoTimesANumber() started.

Test twoTimesANumber() passed after 2.012 seconds.

Test twoTimesAnotherNumber() passed after 2.012 seconds.

Suite "Async tests" passed after 2.012 seconds.

Test run with 2 tests passed after 2.012 seconds.

Each test takes a little over two seconds to run and yet the entire
test suite only takes 2.012 seconds.

We see the benefit of parallel tests.

Time limits and disabled

There is a function in AsyncOperator.swift named longTwoTimes(). It is

the same as twoTimes() except that the Task sleeps for 90 seconds.

Add a test for it to AsyncTests. Here's a possible example.

RPNCalculatorTests/AsyncTests.swift
@Test
func longOperation() async {
 #expect(await longTimesTwo(4.7) == 9.4)
 }

Run AsyncTests. No matter which order the tests are run, the first two

should pass in a little over two seconds. The third one takes a little
more than a minute and a half.

We have a very specific example where the Task sleeps for a specific

amount of time. Often we're making a network call or performing

some other task which we expect to complete within some time
limit. Swift Testing makes it easy for us to set a time limit.

To see it in action, let's specify that longOperation() should complete

in less than a minute. Timelimits are always specified in minutes.

RPNCalculatorTests/AsyncTests.swift
@Test(.timeLimit(.minutes(1)))
func longOperation() async {
 #expect(await longTimesTwo(4.7) == 9.4)
}

Run the tests in AsyncTests again. After a minute longOperation()

fails.

The failure is reported as:

Time limit was exceeded: 60.000 seconds

Perhaps we consider this a bug and want to note that
longOperation() always exceeds this time limit.

Add the bug trait which takes a URL and a description.

RPNCalculatorTests/AsyncTests.swift
@Test(.timeLimit(.minutes(1)),
 .bug("http://example.com",
 "longTimesTwo always takes more than 60 seconds"))
func longOperation() async {
 #expect(await longTimesTwo(4.7) == 9.4)
}

Using bug does not prevent the test from running. We can use the

disabled trait to do this.

RPNCalculatorTests/AsyncTests.swift
@Test(.timeLimit(.minutes(1)),
 .bug("http://example.com",
 "longTimesTwo always takes more than 60 seconds"),
 .disabled("Performance issue with longOperation()"))
func longOperation() async {
 #expect(await longTimesTwo(4.7) == 9.4)
}

Run the tests in AsyncTests. The test is skipped and the following is

reported in the editor and the Console.

Test longOperation() skipped: "Performance issue with

longOperation()"

We also see longOperation() grayed out in the Tests Navigator and a

gray arrow indicates the test was skipped.

There are versions of disabled() that allow us to specify a condition

for which the test or suite is disabled and there is also enabled() that

works as you would expect.

Closure based async

This section will become less relevant over time as closure-based
asynchronous methods are replaced with the modern async syntax. I

cover the technique used here more in depth in "The Curious Case
of the Async Cafe".

There is a final function in AsyncOperator.swift named
closureTimesTwo() which takes a Double and a closure (Double) ->

Void. It is old school async. Instead of returning a value

asynchronously, when closureTimeTwo() is ready to announce a value

it calls the completion.

Here's the implementation of closureTimesTwo().

RPNCalculator/Model/Operators/AsyncOperator.swift
@MainActor
func closureTimesTwo(_ input: Double,
 completion: @escaping (Double) -> Void) {
 Task {
 let result = await timesTwo(input)
 completion(result)
 }
}

We can't call closureTimeTwo() with an await. Instead, we wrap it in a

checked continuation like this.

RPNCalculatorTests/AsyncTests.swift
@MainActor
@Test
func closureAsync() async {
 let result = await withCheckedContinuation {continuation in
 closureTimesTwo(5.8, completion: {double in
 continuation.resume(returning: double)})
 }
 #expect(result == 11.6)
}

Run AsyncTests. All the ones that aren't skipped will pass. Each takes

a little more than two seconds and they run in parallel and take a
total of a little more than two seconds.

Before moving on, let's disable the entire suite as it just adds
unecessary time and tests code we aren't going to use.

RPNCalculatorTests/AsyncTests.swift
@Suite("Async tests",
 .disabled())
struct AsyncTests {

Run the tests. All four tests in AsyncTests are skipped and the total

time taken by testing is 0.027 seconds on my machine.

That's our quick look at testing asynchronous code.

	Copyright and Legal
	Copyright

