

The Mystery Of The Mutating
Mannequin

An Exploration Of

Data Flow In SwiftUI

by Daniel H Steinberg

Editors Cut

This is an excerpt from "The Mystery of the Mutating Mannequin."

Copyright

"The Mystery of the Mutating Mannequin", by Daniel H Steinberg

Copyright © 2024 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-1-944994-05-1

Book Version

This is version 1.0 for Swift 5.9, Xcode 15.2, macOS Sonoma 14.3, and iOS 17.2 released

February 2024. All code has been tested on Apple Silicon.

Code Download

Visit https://github.com/editorscut/ec014dataflow for all of the code
for this book.

Run it in Xcode 15.2 or higher. All code is written in Swift.

To avoid long lines and code that wraps, I've split some lines in
code listings in ways that you might not in an IDE. Please feel free to
not break the lines where I have.

https://github.com/editorscut/ec014dataflow

Recommended Settings

The ePub is best viewed in scrolling mode on an iPad. On smaller
devices I also choose landscape. For some reason that I don't
understand, scrolling mode is supported by Apple's Books app on
the iPad but not on the Mac. If you view this book in Apple's Books
app, choose "Let lines break naturally" in Preferences > General.
Finally, I've gone to great pains to make this look good in light and
dark mode but Apple has foiled me yet again. I'm told that not all of
the syntax coloring works in dark mode.

Submit Errata

Submit your errata here for the book or for the source code by
selecting New Issue. Please provide the book version listed above,
chapter, section, and page number in your issue so that I can find it
and, if possible, resolve it quickly.

Official Links

Please check http://developer.apple.com for additional resources
including videos, sample code, documentation, and forums. You'll
also find information on what is required to take advantage of these
resources.

Apple has posted videos, slides, and sample code from the
Worldwide Developers Conference.

https://github.com/editorscut/ec014dataflow/issues
http://developer.apple.com/
https://developer.apple.com/wwdc/

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

Table Of Contents

Table Of Contents
Copyright and Legal

Copyright
Book Version
Code Download
Recommended Settings
Submit Errata
Official Links
Legal

Chapter 3: Sharing State

Bindable

CHAPTER 3

Sharing State

Sections: Binding
Introducing Journey
More Bindings
Observable Object
Environment
AsyncSequence
Observable
Bindable
Binding and Bindable

We're at the part of the trek where the kids in the back seat are
whining, "are we there yet?"

We tell them that the journey is just as important as the destination.
Look out the window at the lovely cows.

Cows?

Well, in our case different ways of sharing state between two views
so that changes initiated in one view can be seen in another.

"But you promised us SwiftData," the kids cry.

Sure. We're getting there. In fact, the topics of this chapter are
setting up what we'll see in SwiftData.

But actually, there's a lot of intrinsic value in understanding
bindings, ObservableObjects, the environment, AsyncSequences, and

Observable objects.

The kids roll their eyes, but they stop complaining. They sit back
and look out the window.

You think you hear one of them say, "actually, this stuff is pretty
cool."

In this chapter we look at various techniques for sharing state.
Sometimes we need multiple views to reflect the same state and
sometimes we want one view to mutate the state that others display.
We start with the simplest case using bindings and then move on to
more complicated setups where the relationships can't be passed
from one view to another.

We build this using ObservableObject and @Published, then rebuild it

using AsyncSequence and AsyncStream. We then use Observable and

Bindable and simplify our code and communication by combining

this approach with @Binding. I love how we come full circle and see

that it isn't that @Binding is being replaced - it is more that each

mechanism is used where it most makes sense.

CHAPTER 3 : SECTION 8

Bindable

In the previous section we used Observable to communicate from the

model to the views.

Now we'd like to allow the TransportationTypePicker's Picker to bind

to the journey.transportationType so that the changes in Picker

selection change journey.transportationType directly without

needing to implement onChange().

To do this we use @Bindable, a property wrapper that is part of the

Observation framework.

One of the interesting issues with @Bindable is that we need to apply

it to the instance of the Observable object. In other words, we apply

@Bindable to journey in TransportationTypePicker and not

transportationType even though the Picker will be bound to

journey.transportationType (or more accurately

$journey.transportationType).

This presents us with a challenge as we have applied @Environment to

journey to retrieve it from the environment and a property can't

accommodate both @Environment and @Bindable.

You'll see three ways of addressing this limitation. We'll recast
journey as @Bindable in TransportationTypePicker, we'll pull journey

from the environment in JourneyEditor and pass it in to a @Bindable

property, and we'll remove the use of the environment completely.

Continue with our current project or start with the project in
Chapter03/07/.

Introducing Bindable

It's time for more programming by intention.

What I wish I could do is ignore the local transportationType that we

use in TransportationTypePicker and bind to journey's

transportationType.

If we could do this then we wouldn't need onChange() because the

Picker would be changing journey.transportationType using its

bindings. We also wouldn't need onAppear() as

journey.transportationType has a value when this view appears.

Something like this:

RoadTrip/Views/Transportation Type Views/TransportationTypePicker.swift
struct TransportationTypePicker {
 @State private var transportationType = TransportationType.bike
 @Environment(Journey.self) private var journey
}

extension TransportationTypePicker: View {
 var body: some View {
 let _ = Self._printChanges()
 Picker("Transportation Type",
 selection: $journey.transportationType) {
 ForEach(types) {type in
 Image(systemName: type.iconName)
 }
 }
 .pickerStyle(.segmented)
 .padding(.horizontal)
 .onChange(of: transportationType) { oldValue, newValue in
 journey.transportationType = newValue
 }
 .onAppear {
 transportationType = journey.transportationType
 }
 }
}

The correct property wrapper to use for journey is @Bindable,

BUT

as I mentioned, a property can't be both @Environment and @Bindable.

This is gotcha number one.

Let's explore three strategies for addressing this. Although
recommended in Apple documentation, the following is my least
favorite.

Recasting as Bindable

The first way to address our problem is to create a local variable that
is bindable inside body.

RoadTrip/Views/Transportation Type Views/TransportationTypePicker.swift
extension TransportationTypePicker: View {
 var body: some View {
 @Bindable var journey = self.journey
 let _ = Self._printChanges()
 Picker("Transportation Type",
 selection: $journey.transportationType) {
 ForEach(types) {type in
 Image(systemName: type.iconName)
 }
 }
 .pickerStyle(.segmented)
 .padding(.horizontal)
 }
}

This builds and runs correctly but it just doesn't feel right to me. I
can't explain why. It's essentially the same method we use for taking
an argument of a method and recasting it as a var inside the

method body.

We can, instead, create the Bindable version of journey at its point of

use in the picker like this:

RoadTrip/Views/Transportation Type Views/TransportationTypePicker.swift
extension TransportationTypePicker: View {
 var body: some View {
 @Bindable var journey = self.journey
 let _ = Self._printChanges()
 Picker("Transportation Type",
 selection: Bindable(journey).transportationType) {
 ForEach(types) {type in
 Image(systemName: type.iconName)
 }
 }
 .pickerStyle(.segmented)
 .padding(.horizontal)
 }
}

Again, this builds and runs perfectly but it still feels awkward to me.

Once you've seen that this method works, let's undo it so we can try
a second method.

In other words, remove Bindable and restore the $.

RoadTrip/Views/Transportation Type Views/TransportationTypePicker.swift
extension TransportationTypePicker: View {
 var body: some View {
 let _ = Self._printChanges()
 Picker("Transportation Type",
 selection: $journey.transportationType) {
 ForEach(types) {type in
 Image(systemName: type.iconName)
 }
 }
 .pickerStyle(.segmented)
 .padding(.horizontal)
 }
}

The second approach is to move @Environment up a level.

Retrieving Journey in JourneyEditor

Instead of pulling Journey from the environment in

TransportationTypePicker, we'll do that in JourneyEditor and pass it to

TransportationTypePicker.

This won't compile yet as we haven't made the corresponding
changes to TransportationTypePicker, but here's JourneyEditor.

RoadTrip/Views/Journey Views/JourneyEditor.swift
struct JourneyEditor {
 @Environment(Journey.self) private var journey
}

extension JourneyEditor: View {
 var body: some View {
 let _ = Self._printChanges()
 TransportationTypePicker(journey: journey)
 }
}

Now wrap journey with @Bindable in TransportationTypePicker.

RoadTrip/Views/Transportation Type Views/TransportationTypePicker.swift
struct TransportationTypePicker {
 @Bindable var journey: Journey
}

Unlike @Binding, the preview just uses an ordinary instance of

Journey.

RoadTrip/Views/Transportation Type Views/TransportationTypePicker.swift
#Preview {
 TransportationTypePicker(journey: Journey())
}

Run the app. It works perfectly. Despite the quirkiness of the
restrictions on @Bindable it is a very powerful construct. We are able

to change the value of a far-away property that is seen by other
views.

Of course, there's another way to avoid the conflict between
@Environment and @Bindable.

Don't use the environment

Our third strategy for addressing the issue that journey needs to be

@Bindable and pulled from the environment and you can't do both at

the same time, is to not use the environment at all.

At this point both JourneyView and JourneyEditor retrieve Journey

from the environment. We can eliminate our use of the environment
by creating the common instance of Journey in the view that contains

these two: EditableJourneyView.

Remove journey from RoadTripApp.

RoadTrip/Launch/RoadTripApp.swift
@main
struct RoadTripApp {
 @State private var journey = Journey()
}

extension RoadTripApp: App {
 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 .environment(journey)
 }
}

Add journey to EditableJourneyView. Even though they aren't ready

to receive it yet, pass journey on to JourneyView and JourneyEditor.

RoadTrip/Views/Journey Views/EditableJourneyView.swift
struct EditableJourneyView {
 @State private var journey = Journey()
}

extension EditableJourneyView: View {
 var body: some View {
 let _ = Self._printChanges()
 VStack {
 JourneyView(journey: journey)
 JourneyEditor(journey: journey)
 }
 }
}

Remove the @Environment in JourneyView and make journey a simple

let.

RoadTrip/Views/Journey Views/JourneyView.swift
struct JourneyView {
 let journey: Journey
}

Do the same for JourneyEditor.

RoadTrip/Views/Journey Views/JourneyEditor.swift
struct JourneyEditor {
 let journey: Journey
}

Run the app. Everything works perfectly. Isn't this cool?

Actually, now that we aren't using the environment, we can refine
this by combining @Bindable and @Binding. Let's explore that in the

next section.

	Copyright and Legal
	Copyright
	Book Version
	Code Download
	Recommended Settings
	Submit Errata
	Official Links
	Legal

	Chapter 3: Sharing State
	Bindable

