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There is something magical about Functional Programming.

Only a secret cabal of wizards understand it and they use words like
Monads and Applicative Functors to scare you away.

That's non-sense.

You already know a lot about Functional Programming but you
haven't organized your thoughts yet in a way that it is useful to you
on a day to day basis.



We'll start with some fundamentals that are probably familiar to you
as an experienced Swift developer but we'll emphasize them and
look at them in some new ways.

As I will say several times during this book, I'm not asking you to
throw out any of the programming practices that currently serve you
well.

In this book I just offer you insight into some techniques you may
not yet use and show you how you might integrate them into the
work you do.

I was recently leading a workshop and one of my students said, "I
just think that objects are a more natural way of looking at the
world."

I smiled.

The student looked at me quizzically and asked, "what?"

I explained that I'm very old. I'm old enough to remember when we
first started to teach Object-Oriented programming and students
told us that it wasn't a very natural way to look at the world. They
argued that it was contrived.

All of this is contrived.

You need to pick the metaphors that best work for you.

At the end of the book you will have new tools that you can mix and
match with your existing tools.



Please don't fight against the new tools before you've tried them
out in real world projects.

At the same time, please don't get so excited about a new set of
toys that you discard the perfectly-good existing ones.

Functional programming isn't new.

As old as I am, Functional Programming is older. Its roots in
mathematics go back one hundred years. Its roots in programming
in languages such as LISP go back more than sixty years.

In many ways it is magical.

It will change you.

Let's begin with a magic trick.



CHAPTER 1 : SECTION 1

The Trick

In order to play along, look in the code download. You'll see one
folder for each chapter. This chapter's folder is 01. Inside 01 you'll
find two playgrounds. The starting point for this chapter is the one
named Magic.playground. The completed version of the
Magic.playground is in the same directory. It's named
MagicFinal.playground.

Open Magic.playground now in Xcode. You can toggle the
navigation using Command - 0. The first playground page is
01TheTrick.

Start there.

A couple more playground notes.

You should see hyperlinks to Previous and Next on the top and

bottom of the playground page. If instead you see something like
this:

01/TheCardTrick.playground/01TheTrick

//: [Previous](@previous) 
 
 
//: [Next](@next)



go to the Editor menu and towards the bottom you'll find Show
Rendered Markup. Choose that and you should now have the
hyperlinked text.

Also, there is some code tucked away in the playground page's
Source directory and in the Source directory for the entire
playground. Don't look at either yet.

We'll perform a magic trick together.

The Deck

I have a deck of cards which I have shuffled thoroughly.

Add the following line to the playground page to see the Deck.

01/TheCardTrick.playground/01TheTrick 

let theDeck = MagicDeck() 

Run the playground.

On the right side of the screen you will see this representation of
theDeck.

[A ♠ , 2 ♠ , 3 ♠ , 4 ♠ , 5 ♠ , 6 ♠ , (...)]

I've abbreviated the output with (...). You'll see all of the cards

listed, A through K for each of the four suits: ♠ , ♦ , ♣ , and ♥ .



I'll sometimes represent this playground feedback as part of the
code listing at the right side of the page like this.

01/TheCardTrick.playground/01TheTrick 

let theDeck = MagicDeck() 

[A ♠ , 2 ♠ , 3 ♠ , 4 ♠ , 5 ♠ , 6 ♠ , (...)]

Let's perform a trick with theDeck.

Pick a card - any card

I spread the cards in my deck face down and invite you to pick any
card you want.

You are free to choose any one of the fifty-two cards in front of you.
You can pick the top card (which is curiously number 0), the second

card (number 1) and so on. Any card you wish.

Once you've chosen any card from 0 to 51, we'll remove that card
from the deck. That's yourCard.

You look at your card while I organize the other cards face down into
a nice neat pile.

Don't show me your card. I'd like you to memorize it.



01/TheCardTrick.playground/01TheTrick 

let theDeck = MagicDeck() 
 
let yourCard = theDeck.selectCard(at: 22)

10 ♦ 

In this case yourCard is the 10 ♦ .

Oops. I guess I've seen your card. No matter, let's continue.

Return the card to the deck

Place yourCard face down on the top of theDeck.

Notice in this code listing, the existing code is blue and the code
you need to add is red. This should make it easier for you to code
along with me as we work through the book. I will use the red color
to indicate code we are adding or highlighted code I want to
discuss with you.

01/TheCardTrick.playground/01TheTrick 

let theDeck = MagicDeck() 
let yourCard = theDeck.selectCard(at: 22) 
 
theDeck 
    .top(with: yourCard)

Comments will be set off in a light grey.

In the following listing you see existing code, a comment, code to
be added, and the playground feedback that shows yourCard on top



of theDeck. Also, at the top of the listing is the location of the code

including the path to the file and the particular page or file being
modified.

01/TheCardTrick.playground/01TheTrick 

let theDeck = MagicDeck() 
let yourCard = theDeck.selectCard(at: 22) 
// add the code below to place yourCard on top of theDeck
 
theDeck 
    .top(with: yourCard)

[10 ♦ , A ♠ , 2 ♠ , 3 ♠ , 4 ♠ , (...)]

Here's is a comic rendering of a summary of the styling I'll use in this
book to represent the code in listings.



Let's continue with our trick.

The Misdirection



Without looking at yourCard, I take the top card off the deck and tear

it into little pieces.

You glance over and see from the scraps that the torn up card is the
card you selected.

Incidentally, if I don't show you previous code in a listing, you
should add the new code below the existing code.

01/TheCardTrick.playground/01TheTrick 

let topCard = theDeck.topCard 

10 ♦  
let rippedCard = rip(topCard)

Ripped 10 ♦ 

I put the pieces into a metal bowl, safely pour a fluid over them, and
light the fluid on fire.

When the flames burn out we look in the bowl and there's nothing
but some burnt, unrecognizable residue.

I cover the bowl with a silk handkerchief and set the bowl and the
handkerchief to one side.

01/TheCardTrick.playground/01TheTrick 

let burnedCard = burn(rippedCard) 

Burned 10 ♦  
let coveredCard = cover(burnedCard)

Covered Burned 10 ♦ 



It is actually the burned, ripped 10 ♦  but once it's been burned, it

hardly matters that it was ripped as well.

The reveal

I tap theDeck three times and take the topCard off theDeck and ask

you, "is this yourCard?"

To your amazement, it is.

01/TheCardTrick.playground/01TheTrick 

let this = theDeck.tapThreeTimes.topCard 

10 ♦  
this == yourCard 

true

"How did you do that?" you ask.

I could tell you, but you'll be awfully disappointed.

There's not much to the magic you'll see in this chapter. We're
reviewing some of what you know about mutating and non-
mutating functions in Swift. We're looking at structs and classes, lets

and vars.

Mostly, we're warming up.

Let's begin with mutable objects and the dangers of letting others
change our world out from under us.
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