

Copyright

"A Swift Kickstart" Second Edition, by Daniel H Steinberg

Copyright © 2017 - 2020 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 978-0-9830669-8-9

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

This is version 1.0 for Swift 5.3, Xcode 12, and iOS 14 released September 2020.

CHAPTER 7 : SECTION 4

Subclasses

This example comes out of a workshop I used to do at conferences.
At these conferences there were Attendees and people who paid

extra to take the training as well. Here I'm calling them
TutorialAttendees. Because every TutorialAttendee is also an

Attendee, we can model this relationship using subclasses.

The Liskov substitution principle guides how we think of subclasses.
It says that if we have an instance of a TutorialAttendee then when it

comes to things that an Attendee can do, the TutorialAttendee should

behave no differently. It can have additional features and behaviors
but it must be substitutable for an ordinary Attendee.

Set up

Let's start our new playground page with our most recent version of
Attendee.

07Classes/04Subclasses

class Attendee {
 let name: String
 let hometown: String

 init(name: String,
 hometown: String = "Cupertino") {
 self.name = name
 self.hometown = hometown
 }
}

Every Attendee has a name and a hometown. A TutorialAttendee will also

have a tutorial. Let's create our subclass.

Create a subclass

Below this add this subclass named TutorialAttendee. A

TutorialAttendee is an Attendee who's also taking a tutorial. This will

generate an error that we can ignore for now.

07Classes/04Subclasses

class TutorialAttendee: Attendee, CustomStringConvertible {
 // this is wrong but we'll fix it
}

The colon followed by Attendee indicates that TutorialAttendee is a

subclass of Attendee.

CustomStringConvertible, after Attendee, indicates that

TutorialAttendee also conforms to the CustomStringConvertible

protocol.

We can mix and match listing a superclass and one or more
protocols without confusion using the following pattern.

class MyClass: SuperClass, ProtocolOne, ProtocolTwo

A class can have zero or one superclasses. If there's a superclass,
then we list it directly after the colon.

A class can have zero or more protocols. We list them comma-
separated as shown above. If there's a superclass then we list the
protocols after the superclass and a comma. If our class is a base
class, then it won't have a superclass, so we list only the protocols if
there are any.

I included CustomStringConvertible to illustrate the syntax of

conforming to a protocol. Remove CustomStringConvertible from the

top line of Attendee.

07Classes/04Subclasses

class TutorialAttendee: Attendee, CustomStringConvertible {

}

The code builds fine without warnings. Run the code and nothing
happens but we also don't see any errors. Now, add a new property
named tutorial of type String. This causes an error.

07Classes/04Subclasses

class TutorialAttendee: Attendee {
 let tutorial: String
}

We've seen this error message before.

Class 'TutorialAttendee' has no initializers

Before we added tutorial, TutorialAttendee could just use Attendee's

init(). Now TutorialAttendee needs an init() that initializes tutorial

as well.

Initializer for subclass

The message is a bit confusing because we know we inherit an
init() from Attendee. What the error is trying to tell us is that there's

no initializer that sets the value for the tutorial property.

We don't want to repeat the code that we already inherit from the
superclass, so the strategy is to create an initializer that takes
parameters for name, hometown, and tutorial. This initializer sets the

value of tutorial and then calls the init() method in the superclass,

passing along the values for name and hometown.

The order is crucial. Swift strives to keep us safe. It's checking to
make sure that we set all of the property values and it knows that
the initializer in the superclass can't set the value of tutorial, so it

insists that we set the value of tutorial before we call the init() in

the superclass.

The rule is that if we introduce a new property in a subclass, that
property must be initialized before we call up to the superclass'
init() method.

I tend to list parameters that have default values at the end so I
would insert tutorial as the second parameter.

07Classes/04Subclasses

class TutorialAttendee: Attendee {
 let tutorial: String

 init(name: String,
 tutorial: String,
 hometown: String = "Cupertino") {
 self.tutorial = tutorial
 super.init(name: name,
 hometown: hometown)
 }
}

I deliberately shuffled the order of the parameters in
TutorialAttendee to show you that you don't have to preserve the

order from the super class. On the other reason there's no reason
you can't keep the same order and put the new properties at the
start or end of the list.

Creating instances

Now we can create instances of Attendee and TutorialAttendee and

check on their name, hometown, and, in the case of the

TutorialAttendee, tutorial.

07Classes/04Subclasses

let daniel = Attendee(name: "Daniel",
 hometown: "Shaker Heights")
let kimberli = TutorialAttendee(name: "Kimberli",
 tutorial: "Swiftiness")
daniel.name

"Daniel"
daniel.hometown

"Shaker Heights"
kimberli.name

"Kimberli"
kimberli.hometown

"Cupertino"
kimberli.tutorial

"Swiftiness"

I said before that a designated initializer must initialize all of the
properties in its class. It doesn't need to do so on its own. To be a
designated initializer, a subclass must initialize all properties that are
specific to the subclass. Next, it must call up to a designated
initializer in its superclass to initialize the properties that are specific
to its superclass. The process continues until we get to a designated
initializer in the base class.

Understanding initialization

The initialization takes place in two phases. First we move up the
chain initializing all of the properties. Once we are at the base class
and all properties are initialized we can do any other work by calling

methods. Then we return to the line after the call to super.init() in

the first subclass and work our way down the chain.

Here's a summary of the process for a base class with a single
subclass. I've indicated the order out front.

Base class initializiation:

(3) Initialize properties declared in the base class

(4) Do any other setup required now that all properties are
initialized

Subclass initialization:

(1) Initialize properties introduced in this subclass

(2) Call super.init()

(5) Do any other setup now that all superclasses have done
their setup

One last point about initializers and subclasses. There may be cases
where you want to make sure that subclasses implement the same
initializer with the same signature. We can enforce that by adding
the keyword required to the init() in the superclass.

07Classes/04Subclasses

class Attendee {
 let name: String
 let hometown: String

 required init(name: String,
 hometown: String = "Cupertino") {
 self.name = name
 self.hometown = hometown
 }
}

Subclass init

We get an error telling us that we must implement this same init()

in TutorialAttendee. We have to use the required keyword in the

subclass as well.

07Classes/04Subclasses

class TutorialAttendee: Attendee {
 let tutorial: String
 init(name: String,
 tutorial: String,
 hometown: String = "Cupertino"){
 self.tutorial = tutorial
 super.init(name: name, hometown: hometown)
 }
 required init(name: String,
 hometown: String = "Cupertino"){
 tutorial = "iOS Development"
 super.init(name: name, hometown: hometown)
 }
}

That's a quick look at subclasses and initialization. In the next
section we add a method to Attendee.

	Subclasses

