

A SwiftUI Kickstart

Introducing The SwiftUI

User Interface Framework

by Daniel H Steinberg

Editors Cut

Copyright

"A SwiftUI Kickstart", by Daniel H Steinberg

Copyright © 2019-2020 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 9 978-1-944994-00-6

Book Version

This is version 0.6 for Swift 5.3, Xcode 12, and iOS 14 released
October 10, 2020.

Recommended Settings

The ePub is best viewed in scrolling mode using the original fonts.
On smaller devices I also choose landscape. If you view this book in
Apple's Books app, choose "Let lines break naturally".

Legal

Every precaution was taken in the preparation of this book. The
publisher and author assume no responsibility for errors and
omissions, or for damages resulting from the use of the information
contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in
the text. It is not intended to be used in production code.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks or service
marks. Where those designations appear in this book, and Dim Sum
Thinking, Inc. was aware of the trademark claim, the designations
have been printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc.
for which the terms of use don't permit rendering them in all caps or
initial caps. You can view a complete list of the trademarks and
registered trademarks of Apple Inc. at
http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim
Sum Thinking, Inc.

CHAPTER 4 : SECTION 5

Grids

In this section we use grids to layout our symbols. The grid views
don't replace List, they replace VStack and HStack. We begin this

section by backing up a bit and then we replace a VStack with a

LazyVGrid. After that we look at several ways to layout our grid.

Back up

Let's begin by backing up a bit. Here's the current state of our List.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 var body: some View {
 List(symbols){symbol in
 SystemLabel(name: symbol.name)
 }
 }
}

Let's back up to where we used ScrollView, VStack, and ForEach.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 var body: some View {
 ScrollView {
 LazyVStack(spacing: 20){
 ForEach(symbols){symbol in
 SystemLabel(name: symbol.name)
 }
 }
 }
 }
}

Let's convert the LazyVStack to a LazyVGrid.

Introducing a Grid

Grids are either vertical or horizontal. If we use a vertical grid then
we have to specify how the horizontal part, the columns, will be
presented. Each row will be filled using that rule and then the grid
will manage the vertical axis.

We'll specify the columns using an array of GridItems. We then use

that array in our LazyVGrid.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 let columns = [GridItem(.flexible())]

 var body: some View {
 ScrollView {
 LazyVGrid(columns: columns,
 spacing: 20){
 ForEach(symbols){symbol in
 SystemLabel(name: symbol.name)
 }
 }
 }
 }
}

This looks the same as the VStack version.

Let's display only the symbols and experiment with the grid layout.

Flexible

Replace SystemLabel with Image and allow the image to grow to fill

the space allowed.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 let columns = [GridItem(.flexible())]

 var body: some View {
 ScrollView {
 LazyVGrid(columns: columns,
 spacing: 20){
 ForEach(symbols){symbol in
 Image(systemName: symbol.name)
 .resizable()
 .scaledToFit()
 }
 }
 }
 }
}

I've selected the line containing Image so you can see the blue

rectangle that the image is being sized to fit.

The columns are an array containing a single GridItem that is flexible

so it grows to fill the space. As you typed in .flexible() you should

have seen a completion that allows you to specify a minimum and
maximum value.

Now, check out what happens if we add two more columns of
flexible() items.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 let columns = [GridItem(.flexible()),
 GridItem(.flexible()),
 GridItem(.flexible())]
 //...
}

Again, I've selected Image so you can see the bounding rectangles.

Note that after the spacing is accounted for, the remaining
horizontal space is divided into three equal pieces to accomodate
the flexible items.

You're beginning to feel the power or grids. But there's more!

Fixed

We can also specify the size of the items in a column using the fixed

GridItem.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 let columns = [GridItem(.fixed(200)),
 GridItem(.flexible()),
 GridItem(.flexible()),
 GridItem(.flexible())]
 //...
}

This sets the first column to be a fixed width of 200 and splits the
remainder among the three remaining columns. It looks like this.

We use fixed and flexible either by themselves or in combination
with each other to specify a layout for a specified number of
columns. There is another type of GridItem.

Adaptive

The third type of GridItem is adaptive. In this final example we use

the adaptive choice with the restriction that the symbols must be at

least 60 wide. The result is to fit as many symbols in a row as we can
of equal size so long as they are at least 60 wide.

04/05/Symbols/Symbols/ContentView.swift

struct ContentView: View {
 let columns = [GridItem(.adaptive(minimum: 60))]
 //...
}

In this screenshot of the preview you can see even rows that each
have five symbols across.

This is a great setting in which to experiment with different settings
for columns and view the results. Play a little bit before we return to

Lists in the next section.

	Grids

