

Frictionless Generators

by Garrett Dimon

Copyright © 2024 Start & Sustain LLC

1 | Leveraging Templates & Testing

We covered the basics and laid the groundwork for our own custom generator
to handle arguments and options. Now we’ll use those values to generate files.
This is where we pick up the pace and start doing more heavy lifting with all of
the powers that generators provide us.

Since we benefit the most when generators do as much work as possible while
writing as little code as possible, we’ll lean heavily on templates because that’s
where we get the most leverage. We’ll start by digging into how templates work,
and then we’ll see how automated testing reduces the steps needed to verify the
generated results.

We briefly addressed some of this at a high level earlier, but just as templates
streamline the generation portion of our work, automated testing streamlines
the rest of it. We can use a few test commands and assertions to automate
verifying the existence and contents of our generated files, and we get all the
standard benefits of automated tests.

We don’t need to get bogged down in the configuration weeds, but
understanding how and why configuration plays such a central role will shed
light on the big picture. Fortunately, the built-in generator generator handles
most of the configuration lines for us, but just because we don’t have to
understand them doesn’t mean we shouldn’t.

1.1 Templates

The core of the templates functionality originates from Thor, but Rails adds
some magic to ensure they work smoothly with ActiveRecord, the file system,
and tests. Structurally speaking, generators have three core elements: a source
directory for template files, the generator itself, and a destination directory for
the generated files.

The template action coordinates these elements by performing the file

1

1. LEVERAGING TEMPLATES & TESTING

Figure 1.1: Generators look for templates in their source directory via the source_root
variable and then create the generated files in the destination directory via the
destination_root variable.

system work and ERb parsing to generate the files. For a method that does so
much work, the template action only accepts two parameters: the name of
the template file and the relative path and file name for the destination.

1 template "file.rb", "app/models/file.rb"

Conceptually, the arguments for the template method map nicely to the work
it’s doing, but it oversimplifies what’s happening since Rails handles so much of
the configuration for us. In day-to-day use, that frees us from having to think
about how it works, but understanding how it works helps when it comes to
troubleshooting.

Figure 1.2: The template action only needs a source and destination to generate a new file
from an ERb template.

Sources & Destinations

All of this templating functionality pivots on the source and destination
configuration. Earlier, we saw how the values for the source (source_root)
and destination (destination_root) are pre-configured when we use the
built-in generator to create our generator. So now we’ll do a quick refresher and
dive into the details of how it all works.

2

1. LEVERAGING TEMPLATES & TESTING

When we use the built-in generator to start a generator, Rails automatically
creates an empty templates directory to serve as the default source_root
value for each new generator. And if we look in a generator’s initial Class
definition, we see one line of code which sets the source_root by pointing it
at the templates directory.

lib/generators/obj/obj_generator.rb

1 source_root File.expand_path("templates", __dir__)

The destination_root represents our corollary to source_root . While the
source is mostly relevant only for template-related actions, the destination plays
a role in almost every file system change performed by a generator. The
destination root points to Rails.root by default when running a generator,
but the test cases re-route the destination root to the tmp/generators
directory during tests.

Figure 1.3: New Rails generators will set the source_root set to the generator’s templates
directory and the destination_root to Rails.root. Tests override the destination_root put
test-generated files into ‘tmp/generators’.

This customizable nature of the destination root helps with automated testing
to ensure files generated by tests are disposed of properly. Thanks to that tiny
change, we don’t have to worry about junk files accidentally being generated
within the application or committed to the repository.

These source and destination settings also save us from typing something
complex and unreadable to something much easier to type and read. If Rails

3

1. LEVERAGING TEMPLATES & TESTING

generators weren’t using source_root and destination_root values, the
call to the template method would be much more verbose and much less
readable.

Figure 1.4: The template method allows the source and destination parameter values to be
as simple as they can be for the template file and the resulting generated file.

1 # If we had to explicitly specify everything...
2 template "lib/generators/#{generator_name}/templates/file.rb",
3 "#{Rails.root}/app/models/file.rb"
4
5 # vs. what generators enables us to specify...
6 template "file.rb", "app/models/file.rb"

Thanks to a combination of Thor and some Rails generators conventions
leveraging source_root and destination_root , the template call is
easier to type while also being more readable. And it makes testing easier as
well because that destination_root value can be redirected to a disposable
location during testing.

On the surface, all of this may look like it only saves some typing, but it also
makes that template call much more readable. Without the directory and file
extension obfuscating the template file name, we can more quickly recognize
which file we’re referring to.

Figure 1.5: The template method automatically prepends the source_root value and
appends the .tt extension to locate a the source file. It also prepends the
destination_root value for the destination.

4

1. LEVERAGING TEMPLATES & TESTING

If you’re underwhelmed so far, I get it. This all looks relatively simple once you
see how it works, but that’s the beauty of generators. They are that simple. The
magic stems from how all the conveniences and conventions add up and work
together to make it all seamless.

Now that we’ve established some basic context on how templates fit into the big
picture, we can talk about the template files themselves, file names, and ERb.

Writing ERb in Templates

Generators will recognize the relevant files as templates to be read and parsed
into the resulting generated file. In that way the template action serves as the
glue within the generator because it touches all of the key elements. (We can
also use the js_template action for JavaScript templates and the
migration_template for migrations, but we’ll cover those later.)

The ERb support in templates rounds out the magic, and the syntax should be
familiar to anyone that’s written ERb views in Rails. Any dynamic files in the
templates folder need to have the .tt (short for “Thor Template”) extension
after the primary extension. But we don’t have to specify the .tt extension
when using the template action. Our generators just know, and they handle
the extension for us automatically.

For example, with a file named model.rb , the template action expects the
template file to be named model.rb.tt in the templates folder. The
extension helps identify the file as a template, but more importantly, it prevents
Rails from trying to autoload template files that also happen to be Ruby.

While the file name bits are handy, the real power of templates comes from the
ERb. For simplicity’s sake, you can think of any template file with the tt
extension as ERb. Most templates should be simple enough that they won’t
require extensive or complex logic in the ERb since t friction of writing complex
ERb in generator templates helps discourage getting too far into the weeds with
the template files.

For most file types, ERb will work just like it does anywhere else, but things get
a little meta when we use an ERb template to generate an ERb file. In that
context, we need to escape the ERb delimiters (<% , <%= , <%# , %> , and -%>)
that we want in the generated file.

To accomplish that, we add an extra percent sign to the opening ERb delimiter.
So instead of <% to open an ERb block, we use <%% , which gets converted to
the standard ERB delimiters. The same goes for the expression delimiter

5

1. LEVERAGING TEMPLATES & TESTING

(<%%= turns into <%= and <%%# turns into <%#) The generator will process
any unescaped ERb, and while processing, it will convert the escaped delimiters
to standard delimiters in the resulting file so we end up with working ERb.

We also have to be mindful of whitespace. Any whitespace or tabs in our
template files will be carried over into the generated file. Unfortunately, where
extra whitespace won’t create significant problems in most documents, it can
cause all sorts of sloppy indention in the generated files. While we normally
wouldn’t worry too much about extra whitespace in our views, generator
templates need to be more precise since someone will need to read and edit the
file at some point. And if we have arbitrary whitespace everywhere, that’s a
little more challenging.

With generator templates, this has two implications. First, if we indent our ERb,
the whitespace in front of the ERb will be carried through to the generated file.
As a result, ERb templates tend to be a little less elegant than a standard ERb file
would be. For an example, let’s look at the built-in partial scaffolding template
file where we can see all of the executable EbB fully left-aligned. With simpler
templates, this isn’t horribly inconvenient, but with more complex templates,
the lack of indention can make the files much more difficult to read and
understand.

railties/lib/rails/generators/erb/scaffold/templates/partial.html.erb.tt

1 <div id="<%%= dom_id <%= singular_name %> %>">
2 <% attributes.reject(&:password_digest?).each do |attribute| -%>
3 <p>
4 <%= attribute.human_name %>:
5 <% if attribute.attachment? -%>
6 <%%= link_to
7 <%= singular_name %>.<%= attribute.column_name %>.filename,
8 <%= singular_name %>.<%= attribute.column_name %> if <%= singular_name %>.<%=

attribute.column_name %>.attached? %>↪→

9 <% elsif attribute.attachments? -%>
10 <%% <%= singular_name %>.<%= attribute.column_name %>.each do |<%= attribute.singular_name

%>| %>↪→

11 <div><%%= link_to <%= attribute.singular_name %>.filename, <%= attribute.singular_name %>
%></div>↪→

12 <%% end %>
13 <% else -%>
14 <%%= <%= singular_name %>.<%= attribute.column_name %> %>
15 <% end -%>
16 </p>
17 <% end -%>
18 </div>

6

1. LEVERAGING TEMPLATES & TESTING

The other key to managing whitespace in our ERb files involves suppressing
unneeded whitespace and newlines by adding a hyphen just before the closing
tag delimiter. Looking back at the example, we can see that in addition to not
being indented, the executable ERb tags end with -%> instead of %> . That
ensures that our generated file doesn’t have extra blank lines everywhere we
have ERb. This only works if there are no other characters—visible or
invisible—before the opening ERb delimiter. So we have to remove any extra
leading whitespace and fully left-align our ERb if we want this to work.

Collectively, these caveats can be managed once we know to pay attention to
them, but because complex ERb files quickly become difficult to read without
indentation, it’s as if they’re whispering to us that our generator is trying to do
too much when a generator becomes challenging to understand. And since
we’re already working with ERb inside of ERb, when the templates whisper to
us, we should definitely listen.

By itself, using ERb in the templates is great, but generators make it a little nicer
because any methods available within the generator are also available within
the template files. So, to some degree, we can refactor complex ERb templates
by moving some of the logic into the generator itself and then using the method
name as a simplified placeholder in the template. That way, we reduce the
amount of logic in the template, but it can also obfuscate what’s happening
because some of the template content will be defined in the generator file
rather than the template file. When doing this, we have to remember to make
the method private so that the generator doesn’t try to run the method as part of
its process.

Full access to the generator’s public and private methods provides additional
string-oriented conveniences by virtue of all of the available Rails’ inflections
that mean we have a plethora of name variations to use in both the generator
and the template.

Rails Inflections

We briefly touched on the availability of inflections and related methods for the
name argument earlier. Now we can fully expand on what that provides for us
to work with both inside our generator and our templates. Let’s revisit our
contrived overly-name-spaced example again based on running
rails g my_generator Animal::Pet::Dog .

7

1. LEVERAGING TEMPLATES & TESTING

Primary Inflections

1 human_name # => "Dog"
2 singular_name # => "dog"
3 plural_name # => "dogs"
4 file_path # => "animal/pet/dog"
5 file_name # => "dog"
6 plural_file_name # => "dogs"
7 fixture_file_name # => "dogs"
8 class_name # => "Animal::Pet::Dog"
9 class_path # => ["animal", "pet"]

10 regular_class_path # => ["animal", "pet"]
11 table_name # => "animal_pet_dogs"
12 singular_table_name # => "animal_pet_dog"
13 plural_table_name # => "animal_pet_dogs"
14 i18n_scope # => "animal.pet.dog"

Routes & URL Inflections

1 # Routes & Redirects
2 route_url # => "/animal/pet/dogs"
3 singular_route_name # => "animal_pet_dog"
4 plural_route_name # => "animal_pet_dogs"
5 redirect_resource_name # => "@animal_pet_dog"
6
7 # URL Helpers
8 url_helper_prefix # => "animal_pet_dog"
9 index_helper(type: ...) # => "animal_pet_dogs"

10 new_helper(type: ...) # => "new_animal_pet_dog_url"
11 show_helper(arg=..., type: ...) # => "animal_pet_dog_url(@animal_pet_dog)"
12 edit_helper(...) # => "edit_animal_pet_dog_url(@animal_pet_dog)"

Controller Inflections

1 controller_class_name # => "Animal::Pet::Dogs"
2 controller_class_path # => ["animal", "pet"]
3 controller_file_name # => "dogs"
4 controller_file_path # => "animal/pet/dogs"
5 controller_i18n_scope # => "animal.pet.dogs"
6 controller_name # => "Animal::Pet::Dogs"

If the patterns of the resulting strings seem familiar, that’s because Rails uses
them heavily for the built-in generators to create models, migrations, fixtures,
tests, and controllers. When necessary, we can also include the
Rails::Generators::ResourceHelpers module for the additional
controller-related convenience methods in the last group.

8

https://github.com/rails/rails/blob/7d1c4dd7be1b51e2dcbb3614b68dc98c2926d28c/railties/lib/rails/generators/resource_helpers.rb

1. LEVERAGING TEMPLATES & TESTING

Entire Directories as Templates

The template method is handy, but the directory method can do even
more heavy lifting with a single method call. It does everything the template
method does, but it does so recursively for every file and, optionally, for every
sub-directory. Plus, it offers the added bonus of dynamically generating file
names.

Any time I create generators and have the opportunity to use the directory
action, I’m absolutely thrilled because it simplifies so much tedious work. It’s a
good sign that whatever I’m building is a perfect candidate for a generator. But
enough build up. Let’s look at an example.

1 # Source Destination
2 directory "icons", "app/assets/icons"

The method signature looks similar to the template method, but calling
directory results in copies of each and every file in the icons folder having
copies within #{Rails.root}/app/assets/icons . That is, the generator is
copying all the contents rather than creating the source directory nested within
the destination directory.

But the secret superpower comes from the fact that file names can use a
%method_name% syntax, and the generator will run the specified method and
replace that portion of the file name. So if we have a file named
%file_name%.rb in the source directory, the generator will copy it and
rename it according to the generator’s value for file_name . So if we passed
‘email’ as the first argument to the generator, the generated copy of the file
would be email.rb .

This isn’t particularly amazing since the same thing could fairly easily be
achieved with a call to template from within the generator, but there’s
something about one line in our generator recursively generating files from an
entire directory and giving them the correct file name in the process that feels
so efficient.

But that’s not all. The destination path is technically optional, and leaving it off
will create the copy in destination_root if not provided. Again, this is small,
but when we’re generating an entire directory, it’s often not necessary to specify
the destination. Revisiting our example, if we placed our files in the templates

9

1. LEVERAGING TEMPLATES & TESTING

folder using the directory structure we want in our destination, we could
provide a single argument.

1 # From templates... -> Rails.root.join('app/assets/icons')
2 directory "app/assets/icons" # -> Destination Implied

And lastly, we can tell it not to run recursively. That way, we can put multiple
directories in our generator’s templates directory but copy each directory
individually to a unique destination.

1 directory "images", "public/images", recursive: false

Let’s look at a more complete example. Since our generated files frequently
have tests, I’ll often use sub-directories within the templates directory so the
primary files and test files each correspond to a directory call.

Then in my generator, instead of three complex template calls, I’m able to use
two simple directory calls, and the files will automatically be named when
they’re generated as well. Let’s look at a rough example of handling several files
with the template method, and then we’ll see how a similar setup would work
with directory method.

1 # Assuming three files in the templates folder...
2 # - model.rb.tt
3 # - fixtures.yml.tt
4 # - model_test.rb.tt
5
6 # With the template action...
7 template "model.rb", "app/models/#{file_name}.rb"
8 template "fixtures.yml", "tests/fixtures/#{fixture_file_name}.yml"
9 template "model_test.rb", "tests/models/#{file_name}_test.rb"

With directory , we create two directories in the templates folder and then
add the files with their relative paths based on where we’d like them to end up.
This requires more effort to organize the files within the templates folder, but it
drastically simplifies the work within our generator. For just a few files, it’s

10

1. LEVERAGING TEMPLATES & TESTING

likely not worth it, but as soon as we’re using multiple files and target
directories, it can be really nice to simplify the generator. As an added bonus
with directory , we can also add new template files to either of the two
primary directories in the future without having to modify any generator code.

1 # Assuming this directory structure in the templates folder...
2 # - model_files/app/models/%file_name%.rb.tt
3 # - model_test_files/tests/fixtures/%fixture_file_name%.yml.tt
4 # - model_test_files/tests/models/%file_name%_test.rb.tt
5
6 # With the directory action...
7 directory "model_files"
8 directory "model_test_files"

Like most scenarios, we usually have choices how we want to approach
something. Both approaches handle a fair amount of heavy lifting, but
directory can become very handy in cases where we’re planning on working
with numerous files or multiple distinct destination directories. But while
template and directory represent the core examples, we have a couple of
additional options for generating files from templates.

JavaScript & Migration Templates

In addition to the template action, we can also use js_template which can
read from a template file relative to the generator’s templates directory,
process any ERb in the file, and save the generated file to the specified path
relative to the destination_root .

It’s not quite as flexible as the template method, and even the built-in Rails
generators don’t use it extensively as it’s primarily a thin wrapper around
template but removes the need to specify the js extension on the source
and destination. It’s not significantly more convenient, but it can be more
intention-revealing.

11

1. LEVERAGING TEMPLATES & TESTING

1 def create_js_file_from_template
2 # Source Destination
3 js_template 'sample', 'app/assets/javascripts/sample'
4 end
5
6 # Roughly equivalent to...
7 def create_file_from_template
8 template 'sample.js', 'app/assets/javascripts/sample.js'
9 end

In addition to js_template , Rails also provides a Rails::Generators::Migration
module to include a few extra methods related to migrations. These methods
simplify the process of generating migration files by removing the need for us
to deal with the ever-changing timestamp at the beginning of migration file
names.

We get migration_template action as well as create_migration that
accepts a block representing the content and works similarly to create_file .
We also get a some additional attributes related to migrations:
migration_class_name , migration_file_name , and migration_number .
We’re not going to cover these in detail because they’re not as widely useful in
the average generator, but they’re worth being aware of in case you ever need a
generator that works with migrations.

While all of the template-oriented functionality provides the most magic, it’s
only part of the story. We can also create and modify files without using
templates, and we can even run system commands or scripts directly from our
generators. And for the icing on the cake, Rails provides us with dedicated test
cases and assertions for generators that streamline the testing process.

We’ve seen how Rails handles sources and destinations when running a
generator, but we also receive some generator-specific testing utilities and
configuration values to help streamline testing.

1.2 Testing Generators

Now that we have a solid understanding of how and where files are generated,
we can start to appreciate how automating testing provides just the right tools
for ensuring our generators do what we expect. That means we’ll see how to
instantiate and run generators as well as look at the various assertions and

12

https://api.rubyonrails.org/classes/Rails/Generators/Migration.html

1. LEVERAGING TEMPLATES & TESTING

techniques we can use to verify that our generated files exist and to verify that
they contain the content we want to generate.

Before we get into the actual testing, we need to talk about RSpec and
generators. Like all of Rails, generators default toMinitest. RSpec options exist,
but going deep down the customization rabbit hole just to use RSpec with
generators can cut into our time savings. On the other hand, maintaining two
separate automated test suites isn’t a great long-term solution either.

Given that Rails provides dedicatedMinitest assertions for generators, there’s
value and some convenience in sticking with the defaults. If your team is
heavily invested in RSpec, however, you’ll likely encounter some friction. That
can be mitigated by using external gems or building some of your own tools to
streamline testing generators, but both approaches have pros and cons.

Based on my research, the best resource is Thoughtbot’s suspenders gem that
they use to bootstrap new Rails applications. Looking through how they
approach testing Rails generators with RSpec, it definitely provides the best
examples I’ve found. It also includes quite a few generators and RSpec
examples that leverage their custom generator matchers, generator test helpers,
and file operations to streamline testing generators with RSpec.

That said, while the rest of this chapter will focus onMinitest, the context
should still be useful in terms of understanding how it all works. Having a solid
mental model of the internals can also help map the tooling to any custom
RSpec equivalents you may choose to build.

Testing by Pretending

Before we get to automated testing, let’s talk about how “pretending” can help
with testing. We’ve briefly discussed how the --pretend option can
streamline testing usability and interactivity (when a generator inherits from
NamedBase), but it can also work as a sort of smoke test as we’re building our
generator. While automated tests are great at verifying results and quantitative
things, sometimes we just want a quick lightweight smoke test to make sure it
can run without errors or try out any interactivity we may have added.

Even thought it may not be listed as an official testing tool, running a generator
with the --pretend option streamlines the process of seeing what it will feel
like to actually run our generator without bogging us down in manual cleanup
after every run. And if there’s something really wrong with our syntax, we’ll
usually be able to make sense of the error more easily if we’re running it

13

https://github.com/thoughtbot/suspenders
https://github.com/thoughtbot/suspenders/blob/main/spec/support/generator_matchers.rb
https://github.com/thoughtbot/suspenders/blob/main/spec/support/generator_test_helpers.rb
https://github.com/thoughtbot/suspenders/blob/main/spec/support/file_operations.rb

1. LEVERAGING TEMPLATES & TESTING

directly from the command line than if we’re making assertions in our tests.

Automated Preparation & Cleanup

Now that we have the lay of the land, we can dive into how our automated tests
integrate with generators. Revisiting our generator’s initial test case from the
test file, we have the three lines of configuration that work together to save us
from dealing directly with our file system. We covered them earlier, but let’s
look at them again in light of everything we’ve learned up to this point.
Together, they specify the generator to be tested while ensuring we have a clean
destination directory before each test case.

test/lib/generators/obj_generator_test.rb

1 tests ObjGenerator
2 destination Rails.root.join("tmp/generators")
3 setup :prepare_destination

The first line establishes which generator we’ll be testing. That way, the test
helpers can reference the generator_class method and know which
generator to run for the test. Then the destination declaration takes the first
step in routing all the test-generated files to tmp/generators where we can be
confident they won’t pollute our codebase.

Note that even though it’s setting destination_root , the declaration uses the
destination class method for the test case. This line doesn’t do all the work
by itself, but we’ll cover that shortly.

The setup method in the next line ensures that we have a clean destination
directory before each test. By running it before rather than after the test, any
files generated during the test stick around if we need to perform any manual
inspection in our tmp/generators directory. That’s really handy to remember
because it enables us to run a specific test and see the actual results in
tmp/generators when our automated tests fail. As inefficient as swimming
around the file system is, sometimes manual inspection of results is the best
way to troubleshoot.

Moreover, by re-routing test-generated files, we never have to worry about
garbage files sneaking into our repository, and we never have to manually clean
up the generated files and changes. Since tmp is .gitignore’d, the repository
stays clean, and testing our generators takes milliseconds instead of seconds or
minutes.

14

1. LEVERAGING TEMPLATES & TESTING

Running vs. Instantiating Generators

We’ve seen how our configuration told our test suite that it’s testing the
ObjGenerator so we don’t need to specify the generator name in each of our tests.
Instead, generator tests provide two methods to facilitate testing. One lets us
create an instance of the generator so we can inspect state, and the other lets us
run the generator so we can inspect results.

The run_generator method will be our primary option. It performs a full
generator run so our tests can inspect the destination_root and generated
files. The generator method, on the other hand, lets us create an instance of
our generator without running it. That gives us a way to inspect the values to
ensure they were translated from the command line to our arguments and
options as we expected.

Other than saving us from needing to specify the generator name over and over
again, these two methods also handle the last piece of our automated-cleanup
puzzle. They override our destination_root so that files generated during
tests end up in tmp/generators instead of Rails.root .

The key takeaway from this is that overriding the destination_root only

happens if we test our generator using one of these two methods. If we were to
use a direct system call to run our generator
(i.e. system "rails g model NAME"), that call would use the generator’s
actual destination_root value and would no longer be re-routing the
generated files to tmp/generators for us. In that scenario, not only will our
files be generated outside of the tmp folder, but our tests won’t pass since
they’ll still be looking in the tmp folder.

With that out of the way, let’s see how they work. With run_generator , we can
pass the values just like we would if we were calling it from the command-line.
And if we use Ruby’s %w syntax for creating a string array, we can pass the
arguments and options precisely how we’d type them on the command line.

1 # Equivalent to the command line version:
2 # rails g generator_name myapp --skip-active-record
3 run_generator %w(myapp --skip-active-record)

We’ll usually want run_generator because it correlates more closely with
how the generator would be called from the command line. But occasionally,

15

1. LEVERAGING TEMPLATES & TESTING

we want an instance of our generator so we can inspect its state prior to running
it. We can technically use generator with tests and assertions, but I’ve found
that the end-to-end nature of testing a complete generator run will create the
mots reliable tests in the long run.

Unlike run_generator , the generator command accepts an array of
arguments and a hash for options. Since we provide those values directly in
Ruby, it can unintentionally mask issues where something might otherwise be
lost in translation between the command-line string and the generator’s parsing
of that string. Since run_generator mimics the command line approach
most closely, it provides the more complete integration test similar to how
people will actually use the generator.

1 # Since the values are already Ruby, this can mask issues that
2 # might otherwise arise from the generator parsing the values
3 # from the command line and converting them.
4 args = [arg_one, arg_two]
5 opts = { one: 1, two: 2 }
6 g = generator(args, opts)
7
8 # A more accurate test of day-to-day usage...
9 run_generator %w[arg_one arg_two one:1 two:2]

Default Testing Arguments

When working with a generator where most of the test cases can use the same
set of arguments, we can use the arguments method to declare default values
for calls to run_generator . To accomplish that, we add the declaration right
after the setup :prepare_destination line, and calls to run_generator
no longer need arguments specified every time.

Default Arguments for Generator Tests

1 arguments %w(app_name --skip-active-record)

Note that even though it’s called “arguments”, it handles both arguments and
options. Essentially, it provides the array of values passed to run_generator
and generator calls. Keep in mind that it creates some indirection since the
argument declaration won’t be inline with the relevant method calls. It isn’t a
huge problem, but it can obfuscate things a bit in the future when debugging
issues.

16

1. LEVERAGING TEMPLATES & TESTING

While all of the test configuration sets the table for us rather nicely, it’s not only
about getting a purpose-built testing setup for our generators. We also get some
extra generator-specific assertions. In addition to the custom assertions, the
Rails::Generators::TestCase class includes Ruby’s FileUtils for us automatically. So
when the assertions aren’t enough, we can quickly turn to those lower-level tools
as well. Fortunately, all the additional assertions have extensive documentation,
but we’ll go through them here to help get a feel for how they improve testing.

File and Directory Assertions

Rails provides some foundational assertions related to files and directories that
provide convenient ways to verify that a file was (or was not) generated with
assert_file and assert_no_file . These are also aliased as
assert_directory and assert_no_directory . These assertions look in
the specified destination for the test—which will be tmp/generators unless
we change the default value provided by the generator generator. When not
explicitly specified otherwise, any of the path-based values can be absolute
paths or paths relative to the destination_root .

While they do verify the presence or absence of files/directories, that’s not all
they do. They can also verify content within the file—assuming a file is found.
All together, we have three options for using these assertions. With the simplest
version, we can easily verify that an expected file or directory exists. And like
other path-related aspects of generators, the assertions play nicely with
destination_root .

Testing only for Existence

1 assert_file "dir/file.rb"
2 assert_directory "dir"

To verify the presence of a string in a file’s contents, we can check for the
existence of the file and the presence of the string by passing the string as a
second argument. Even better, the second argument can be a string or a regular
expression. With a string, it expects an exact match, and with the regular
expression, it performs a standard regex match.

Testing for Existence and Content

1 assert_file "dir/file.rb", "class Query; end"
2 assert_file "dir/file.rb", /Query/

17

1. LEVERAGING TEMPLATES & TESTING

These options can get us pretty far, but we can also pass a block to handle more
complex assertions about the content—including multiple different assertions
about the content. And for cases where we expect our generator to skip some
files under certain conditions, we can also use assert_no_file and
assert_no_directory to verify that they were not generated.

1 assert_file "model/user.rb" do |file_content|
2 assert_match(/class User/, file_content)
3 assert_match(/def first_name/, file_content)
4 assert_match(/def last_name/, file_content)
5 end

While the generic assert_file variations are great for most cases, we don’t
always have predictable file names in the case of things like migrations. For
that, Rails provides assert_migration and assert_no_migration when
we need to test them. Like the other migration-related utilities, the
assert_migration method is similar to its siblings like assert_file but
with a trick up its sleeve. Since migration files prepend timestamps to the
migration name, we can make the assertion without having to specify the exact
generated file name.

Verify that a Migration was Generated

1 assert_migration "db/migrate/migration_name.rb"

That way, the assertion will succeed regardless of the generated timestamp. If
you’re curious about the flexibility, it’s using the migration_file_name
method behind the scenes and checking to see if there’s a file name in the
directory that starts with a series of digits followed by the underscore and
followed by the file name with the same extension.

File Content Assertions

While assert_match isn’t a generator-specific assertion, it is useful when
verifying the contents of generated files. Most likely, you’ve encountered or
used it previously, but given its usefulness with generated content, it frequently
helps in generator tests.

In addition to assert_match , we also get some specialized assertions to help
cover common scenarios. For example, we have assert_instance_method

18

https://github.com/rails/rails/blob/9c22f35440ab85718ebf48e26b8944032c737193/railties/lib/rails/generators/testing/behavior.rb#L108-L112
https://github.com/rails/rails/blob/9c22f35440ab85718ebf48e26b8944032c737193/railties/lib/rails/generators/testing/behavior.rb#L108-L112

1. LEVERAGING TEMPLATES & TESTING

(aliased as assert_method) and assert_class_method to explicitly verify
that the relevant method is defined. Even better, both assertions optionally
yield the content of the method to a block for more detailed verification if a
match is found.

As handy as assert_instance_method is, it only performs a naïve text search
for the method name preceded by def . It is not inspecting the available
methods for the generator. As a result, it will not discover methods defined
dynamically via method_messing or other similar techniques.

Verify the Existence and Content of a Method

1 assert_instance_method :full_name, "[first_name, last_name].join(' ')"

Like assert_file , assert_instance_method can also yield the contents of
the method to a block for more detailed verification of the method’s internals,
and we can even nest these to verify multiple methods in the same file.

Verify a File, Method, and the Method Contents

1 assert_file "model/user.rb" do |file_content|
2 assert_instance_method :full_name, file_content do |method_content|
3 assert_match(/first_name/, method_content)
4 assert_match(/last_name/, method_content)
5 end
6 end

In the case of assert_class_method , it works just like
assert_instance_method , but it uses a naïve text search looking for
methods defined with self. preceding the method name. Unfortunately, that
means it will not recognize class methods defined in class << self blocks.
We can, however, still use assert_match for cases where we define the class
methods in a block. And like its siblings, assert_class_method can also
yield the contents of the method to a block for more detailed verification.

1 assert_class_method :first, file_content_string

19

1. LEVERAGING TEMPLATES & TESTING

1 assert_file "model/user.rb" do |file_content|
2 assert_class_method :first, file_content do |method_content|
3 assert_match(/all/, method_content)
4 end
5 end

Keep it Simple

Thanks to this minimal set of assertions, we’re able to maintain a high level of
confidence with very little effort. Of course, there’s no real limit to what we can
test or verify, but we’ll see the most significant time savings the less code we
write.

So whenever we find ourselves starting to use other assertions or creating
complex custom tests in our generators, we may find that we’re having our
generators try to do more than those few tasks for which they’re ideally suited.
Just like with utilities, the lower-level we get, the more likely we are to waste
time building things that won’t be saving us time. So if a test starts to feel
complicated, that’s often a good sign that the generator is trying too hard.

1.3 Take Care with Locations

We’ve seen how our destination_root is a moving target depending on
whether we’re running our generator from the command line or running it
within our tests. Regardless of the context, though, knowing that it can change
depending on context might provide a hint at how crucial it is to ensure we
reference it in path and file names in most situations.

Joining Pathname Elements

For simplicity, I’ve used basic string concatenation for the destination path up
to this point, but there’s one more thing worth keeping in mind. Let’s look at an
example template call for context. The source parameter is simple enough
because it already knows where to look for that (the generator’s templates
directory), and we only need to provide the template file name. The destination,
however, will be slightly more involved if we want to strive for cross-platform
compatibility. While the path to the source file is handled automatically, we’ll
want to use File.join to specify the pathname for the destination in order to
maintain maximum compatibility across operating systems.

20

1. LEVERAGING TEMPLATES & TESTING

1 template "task.rb", File.join("lib", "tasks", "#{file_name}.rake")

In this example, the destination path uses a File.join call instead of pure
string concatenation. This is one of those small things that helps ensure
maximum compatibility with Windows, Unix, or Mac because File.join uses
the appropriate directory delimiter for the current system. (“\” on Windows and
“/” on Unix/Mac.)

Navigating the File System

We’ve already seen how destination_root and source_root work with
generators. Generally, the primary actions will be enough, and we can trust
them to handle these locations for us. Every so often, however, we’ll need to fall
back to lower-level tools like File or FileUtils. Or we might need to work with
destinations outside of Rails.root . In those cases, we want to have a good
grasp of what’s going on in the background.

For example, when I generate a newMarkdown file for a blog post on my
personal site, the generator checks to see if I’ve added images for the post.
Since new images for posts will ultimately live in a directory that doesn’t exist
yet, I place them in tmp/scratch , and the generator knows to look there.
Since these images are always unique to each blog post, the original images
don’t belong in the generator’s templates folder—or version control for that
matter. So I put them in a temporary folder for the generator to check and then
optimize and move the images where they need to go.

With my custom generator knowing to check for images, it can then iterate over
the images without knowing how many to expect. It can also optimize each one,
move it to the correct long-term destination, and generate the corresponding
code for each image directly in the newly generatedMarkdown file. But since
these files live somewhat outside the standard generator workflow, we need to
make sure our file system commands reference source_root and
destination_root in the relevant locations when handling the paths.
Otherwise, our tests will be overriding destination_root , and those tests
will know nothing about the custom locations our generator is using.

We’ll cover the details shortly, but the primary thing to remember about
locations is that if we want to start tinkering with files outside the standard

21

1. LEVERAGING TEMPLATES & TESTING

source or destination locations, we’ll want to explicitly specify paths relative to
these locations.

Depending on the context, we might want to use the inside utility action to
specify a working directory and pass a block that has the relevant commands,
but when sources and destinations are involved, it can sometimes be handy to
explicitly specify both source and destination since inside only affects the
source directory. So we have options, but for explanatory purposes, we’ll take
this example all the way down to clarify the challenges with lower-level tools.

If we find we’re doing this frequently, we can create some helper methods for
them. On the other hand, frequently using tools other than those integrated
into generators may be one of those signs that we’re trying to shoehorn
generators into doing something they’re not necessarily great at. Any time I find
myself using lower-level tools in generators, I’ll often step back to think about
whether there’s a better way to handle it—or if it should be automated at all.

1.4 Our Generator: Adding Templates & Tests

Now we’re able to start building out the core functionality of our generator. We
can create templates and define the behavior that will generate our files, and we
can add the tests that ensure they work as expected. We have endless options on
how to approach this, so we’ll start with the shell of our model template and
iteratively make some enhancements that take advantage of the full capabilities
of generators.

lib/generators/obj/templates/model.rb.tt

1 class <%= class_name %>
2 end

It’s not much to look at, but we have a template file that uses the class_name
inflection. But for our generator to do anything with this file, we need to add
some logic within the generator. We already have our validation method
validate_accessors_count , and since generators automatically run all of
the public methods in the order they’re defined, we’ll want to add our
model-generation method right after that with a call to template .

22

1. LEVERAGING TEMPLATES & TESTING

lib/generators/obj/obj_generator.rb

1 class ObjGenerator < Rails::Generators::NamedBase
2 source_root File.expand_path("templates", __dir__)
3
4 # ... Constant, Argument & Option
5
6 def validate_accessors_count
7 # ...
8 end
9

10 def generate_object_file
11 template "model.rb", File.join("app", "models", "#{file_name}.rb")
12 end
13 end

We could run this right now with rails g obj fancy name , and we’d get our
generated class file. But since we’re far from done, we’ll run it with --pretend
to check-in and make sure we haven’t made any significant mistakes. That way,
we can be reasonably confident it works without having to worry about cleaning
up incorrectly-generated files if something is broken.

1 $ rails g obj Fancy name --pretend
2 create app/models/fancy.rb

Now that we’ve got some basic confirmation that our generator can run, let’s add
a proper test. We’ll want to verify that our file was generated and contains our
class declaration. For that, we’ll turn to assert_file and assert_match .

1 test "generates the object file" do
2 run_generator %w[Point x y]
3 assert_file "app/models/point.rb" do |content|
4 assert_match(/class Point/, content)
5 end
6 end

Now we can run our generator tests with
rails t test/lib/generators/obj_generator_test.rb to verify that it
not only runs but actually generates the desired file. And since we’ll want to

23

1. LEVERAGING TEMPLATES & TESTING

also generate a corresponding test file, we can go ahead and add a test for that
as well.

1 test "generates the object test file" do
2 run_generator %w[Point x y]
3 assert_file "test/models/point_test.rb" do |content|
4 assert_match(/class PointTest < ActiveSupport::TestCase/, content)
5 end
6 end

And with a simpler generator like the one we’re building, we’ll see that with
only two tests we’re already repeating our arguments every time. That’s
perfectly fine, but we’ll go ahead and pull those out into defaults using the
arguments class method so we don’t have to specify them every time. And
with these changes, we’ve got our first tests—one passing and one failing.

test/lib/generators/obj_generator_test.rb

1 require "test_helper"
2 require "generators/obj/obj_generator"
3
4 class ObjGeneratorTest < Rails::Generators::TestCase
5 tests ObjGenerator
6 destination Rails.root.join("tmp/generators")
7 setup :prepare_destination
8 arguments %w[Point x y]
9

10 test "generates the object file" do
11 run_generator
12 assert_file "app/models/point.rb" do |content|
13 assert_match(/class Point/, content)
14 end
15 end
16
17 test "generates the object test file" do
18 run_generator
19 assert_file "test/models/point_test.rb" do |content|
20 assert_match(/class PointTest < ActiveSupport::TestCase/, content)
21 end
22 end
23 end

We’re on a roll, but we want both of our tests to pass. So let’s add the template
for our test file and update the generator to process that template as well. We’ll

24

1. LEVERAGING TEMPLATES & TESTING

start by filling in a little more information in the test file template, but we’ll
limit our ERb to the included inflections for now.

lib/generators/obj/templates/model_test.rb.tt

1 require "test_helper"
2
3 class <%= class_name %>Test < ActiveSupport::TestCase
4 setup do
5 @<%= singular_name %> = <%= class_name %>.new
6 end
7
8 test "the truth" do
9 assert_predicate @<%= singular_name %>, present?

10 end
11 end

And in our generator, we’ll add a method to generate the test file. We could just
as easily include it within the generate_object_file method, but I find
generators are a little more self-documenting if each piece of logic has its own
method and each method has a corresponding test.

lib/generators/obj/obj_generator.rb

1 class ObjGenerator < Rails::Generators::NamedBase
2 source_root File.expand_path("templates", __dir__)
3
4 # ... Constant, Argument & Option
5
6 def validate_accessors_count
7 # ...
8 end
9

10 def generate_object_file
11 template "model.rb", File.join("app", "models", "#{file_name}.rb")
12 end
13
14 def generate_object_test_file
15 template "model_test.rb", File.join("test", "lib", "models", "#{file_name}_test.rb")
16 end
17 end

Now if we run our tests again, everything should pass.
(rails t test/lib/generators/obj_generator_test.rb) Our generator
is finally starting to do some work, but it’s not yet doing anything with our
arguments or our :comparable option. So let’s upgrade our templates by

25

1. LEVERAGING TEMPLATES & TESTING

expanding our generator’s tests first. We’ll start by having our test look for the
attr_accessor declaration and the initialize method within our
generated object.

1 test "supports specifying attr_accessor fields for the model" do
2 run_generator
3 assert_file "app/models/point.rb" do |content|
4 assert_match "attr_accessor :x, :y", content
5 assert_method :initialize, content do |method_content|
6 assert_match "@x = x", method_content
7 assert_match "@y = y", method_content
8 end
9 end

10 end

Now our tests will be failing again. So let’s verify that they’re failing, and we’ll
update our template to handle these new expectations. Our attr_accessor
and def initialize lines can map our array values to comma-separated
strings, but we’ll want to loop through the assignments in the class
initialize method since they each get their own line. And remember, since
our whitespace will carry through to the generated file, all of our ERb blocks
need to be left-aligned and terminated with -%> so they don’t add unnecessary
line breaks.

lib/generators/obj/templates/model.rb.tt

1 class <%= class_name %>
2 attr_accessor <%= accessors.map { |name| ":#{name}" }.join(', ') %>
3
4 def initialize(<%= accessors.map { |name| "#{name}:" }.join(', ') %>)
5 <% accessors.each do |name| -%>
6 @<%= name %> = <%= name %>
7 <% end -%>
8 end
9 end

With those changes, our tests should be passing again. Now we can add in our
handling for our comparable option. That means we need to include the
Comparable module and create a placeholder definition for the <=> method.
And since our comparable option is boolean, we’ll add one test with the
option included and one specifying not to include it.

26

1. LEVERAGING TEMPLATES & TESTING

Since we specified defaults arguments for our tests as %w[Point x y] , we’ll
need to explicitly specify the arguments to run_generator for these tests so
they include --comparable and --no-comparable respectively. With
aliases, it can often be handy to test them as well purely to increase the chances
that a test will fail if there are conflicts with other aliases. Let’s add some failing
tests, and then we can update our template to satisfy the tests.

1 test "supports specifying --comparable for the model" do
2 run_generator %w[Point x y --comparable]
3 assert_file "app/models/point.rb" do |content|
4 assert_match(/include Comparable/, content)
5 assert_instance_method '<=>', content
6 end
7 end
8
9 test "supports specifying or --no-comparable for the model" do

10 run_generator %w[Point x y --no-comparable]
11 assert_file "app/models/point.rb" do |content|
12 assert_no_match(/include Comparable/, content)
13 assert_no_match("def <=>", content)
14 end
15 end

We’re adding two if statements to the template and checking comparable?
so we know whether our generated model should include the relevant code or
not.

lib/generators/obj/templates/model.rb.tt

1 class <%= class_name %>
2 <% if options.comparable? -%>
3 include Comparable
4
5 <% end -%>
6
7 # ... Accessors and Initializer
8
9 <% if options.comparable? -%>

10 def <=>(other)
11 # self.<value> <=> other.<value>
12 end
13 <% end -%>
14 end

With these template updates, our tests should be passing again. We’ve skipped
one minor detail from our original object design, though. We want or objects to

27

1. LEVERAGING TEMPLATES & TESTING

define to_h , to_a , and to_s by default. So we’ll add those in along with the
corresponding assertions so we can see our finished model object. In the case
of the tests, instead of adding a new test case, we’ll add a few
assert_instance_method calls in our object test.

test/lib/generators/obj_generator_test.rb

1 require "test_helper"
2 require "generators/obj/obj_generator"
3
4 class ObjGeneratorTest < Rails::Generators::TestCase
5 # ... Configuration
6
7 test "generates the model file" do
8 run_generator
9 assert_file "app/models/point.rb" do |content|

10 assert_match(/class Point/, content)
11 assert_instance_method(:to_h, content)
12 assert_instance_method(:to_a, content)
13 assert_instance_method(:to_s, content)
14 end
15 end
16
17 # ... Other Tests
18 end

And since our tests will be failing without defining those methods, our model
template needs some updates to ensure all of relevant methods will be
generated. We’ll add the methods, and between all three methods, we only need
a single stretch of ERb. The rest can be plain text because it will always be the
same as far as the generator is concerned.

28

1. LEVERAGING TEMPLATES & TESTING

lib/generators/obj/templates/model.rb.tt

1 class <%= class_name %>
2
3 # ...
4
5 def to_h
6 { <%= accessors.map { |name| "#{name}: #{name}" }.join(', ') %> }
7 end
8
9 def to_a

10 to_h.values
11 end
12
13 def to_s
14 to_h.values.to_sentence
15 end
16
17 # ...
18
19 end

This is all great, but something is still missing. Given the relatively narrow scope
of our generator, we could proactively generate some tests to go along with our
generated object. For many scenario’s, auto-generating tests would fall into the
category of over-doing things, but we’ll go ahead and create some as an example
of generated related code in separate files. Let’s go back and add a little bit to
our object’s test template.

29

1. LEVERAGING TEMPLATES & TESTING

lib/generators/obj/templates/model_test.rb.tt

1 require "test_helper"
2
3 class <%= class_name %>Test < ActiveSupport::TestCase
4 setup do
5 @<%= singular_name %> = <%= class_name %>.new(<%= accessors.map { |name| "#{name}: nil"

}.join(', ')%>)↪→

6 end
7
8 test "the truth" do
9 assert_predicate @<%= singular_name %>, :present?

10 end
11
12 test "supports common Ruby functionality" do
13 assert @<%= singular_name %>.to_h.is_a?(Hash)
14 assert @<%= singular_name %>.to_a.is_a?(Array)
15 assert @<%= singular_name %>.to_s.is_a?(String)
16 end
17
18 <% accessors.each do |name| -%>
19 test "exposes getter/setter for <%= name %>" do
20 assert @<%= singular_name %>.respond_to?(:<%= name %>)
21 assert @<%= singular_name %>.respond_to?(:<%= name %>=)
22 end
23 <% end -%>
24 end

These aren’t the most robust tests, but they provide a little coverage of the key
elements. In most cases, we probably wouldn’t generate tests that do much
more than ensure the generated file works. So if it’s generating a Ruby class,
we’d probably want to make sure an instance can be successfully instantiated.
Going much further often results in people having to delete a bunch of
irrelevant boilerplate code. So if ever there’s a case where less is more, this is it.

Proactively generating tests often works best for providing minimal
placeholders that serve as an outline for tests that are likely to be necessary. For
example, if we create a generator for query objects that builds the class with an
initializer, a run method, and a results accessor, we might define
placeholder tests for instantiating a query, running it, and then one test each for
successful results and and empty results. Then, the generator is still helping,
but it’s not pre-defining a bunch of code that’s likely to just be deleted.

At this point, we’ve built a simple but useful generator, and we’ve covered all of
our foundational bases. From here on out, we’ll get into some of the lower-level
functionality and tools that provide more granular control over our generator’s
behavior.

30

1. LEVERAGING TEMPLATES & TESTING

1.5 Summary & Review: Templates & Testing

If we’re serious about saving time, generator template actions hold the key.
They require some up-front effort before they become second nature, but once
they do, generators can save time in endless scenarios. Let’s run through what
we’ve covered and how they play such a significant role.

• The template and directory actions are superpowers. They handle an
incredible amount of work under the hood so we barely even have to think
about it. Reach for them first, and only fall back on lower-level utilities when
absolutely necessary.

• Remember that the directory action supports dynamic file names. Using
sub-directories in the templates folder—one for code and one for
tests/fixtures—can make it more practical, but sometimes multiple template
calls are good enough.

• Make themost of higher-level actions when possible. Since the built-in
actions handle sources and destinations seamlessly, straying from those puts
more burden on you to use source_root and destination_root correctly
with lower-level tools.

• Remember to escape ERb delimiters when generating ERb. Add an extra %
in ERb delimiters when you want to generate an ERb file.

• Pay close attention to whitespace and use -%> to avoid unnecessary new

lines. ERb templates will render any additional whitespace into the generated
file, so ERb sections need to be fully left-aligned and end with -%> to avoid
generating excess whitespace.

• Templates can access everything the generator can. Anything that we can
access from within the generator code can be accessed from within the
template as well. That includes all of the Rails inflections as well as public or
private methods from the generator.

While templates are great, they aren’t a superpower unto themselves without
the wide array of generating-testing tools we get. With generators, automated
tests are the real superhero because testing file generation requires an absurd
amount of tedious file and content verification without tests.

• Use --pretend to test manually. Automated tests might be the best option,
but occasionally we have to get our hands dirty with manual testing and
verification—especially with generators that use prompts.

31

1. LEVERAGING TEMPLATES & TESTING

• You can always dig into the tmp/generators folder.When possible, running
a single test will leave the generated files around since they’re only cleaned up
before each test. That makes it a little easier to investigate manually when
something’s not working.

• Keep your eyes on the destination_root . The tests override it for good
reason, but even using a FileUtils method once can create chaos if we’re not
careful to apply the destination_root .

• Tests only override the destination_root when the generator and

run_generator commands. Even though test cases specify a different
destination root, the change will only affect generators run using the test
helpers.

• Running generators using run_generator is themost complete option.

Running a generator behaves more like an end-to-end test since the arguments
and options are passed similarly to how the command would be entered from
the command line.

• Instantiate generators using generator to inspect state. Running a
generator can make it challenging to inspect state and ensure everything
checks out before it runs. In those cases, we can instantiate a generator to peek
inside without running it.

• Make use of default arguments where possible. For simple generators,
providing default arguments can streamline testing a bit, but separating the
arguments from the test can make it less obvious when an argument causes
problems.

• The file and directory assertions are location-aware. Just like with the
actions, the generator-specific assertions seamlessly handle source and
destinations for us. The more we drift from the built-in tools in the generator or
tests, the more likely we are to have some wires crossed.

• Always verify there’s at least some content from a file.Writing assertions for
every specific type of content isn’t necessary, but we want to at least make sure
the files aren’t blank. So adding even a single content check can help catch
indirect problems.

These tools are powerful as long as we go with the flow, but listen to the tests
and generator if things start to feel complex. Straying from conventions can bog
us down in ways that lower the value of the generator if we have to spend too
much time debugging complexity. We can’t go wrong with simple and
easy-to-test generators. When a creating a generator starts to feel slow, focus on
generating the basics, and leave the rest to the humans. Remember, we only
need to give people a springboard rather than carry them the whole way.

32

1. LEVERAGING TEMPLATES & TESTING

. . . that’s just a brief extract.

33

	Leveraging Templates & Testing
	Templates
	Sources & Destinations
	Writing ERb in Templates
	Rails Inflections
	Entire Directories as Templates
	JavaScript & Migration Templates

	Testing Generators
	Testing by Pretending
	Automated Preparation & Cleanup
	Running vs. Instantiating Generators
	Default Testing Arguments
	File and Directory Assertions
	File Content Assertions
	Keep it Simple

	Take Care with Locations
	Joining Pathname Elements
	Navigating the File System

	Our Generator: Adding Templates & Tests
	Summary & Review: Templates & Testing

